GUÍA de Práctica Clínica

Linfoma de Hodgkin Clásico:
Actualización en abordaje diagnóstico y terapéutico de paciente adulto

GRANEL - AAHH

Coordinadora:
Dra. Francisca Hernández Mohedo
(Primera edición: 2019)

Con el aval científico de:
GUÍA de Práctica Clínica

Linfoma de Hodgkin Clásico: Actualización en abordaje diagnóstico y terapéutico de paciente adulto

GRANEL - AAHH
GUÍA de Práctica Clínica

Linfoma de Hodgkin Clásico: Actualización en abordaje diagnóstico y terapéutico de paciente adulto

GRANEL - AAHH
GRUPO ANDALUZ DE NEOPLASIAS LINFOIDES (GRANEL)

Coordinadora:
Dra. Hernández Mohedo

Revisores externos:
Dr. Carlos Solano Vercet
Dra. Anna Sureda Balari

Autores:
Dr. Carlos Solano Vercet
Dra. Anna Sureda Balari
Dr. Eduardo Ríos Herranz
Dra. María Casanova Espinosa
Dr. Alejandro Contento Gonzalo
Dr. Antonio Jesús Cruz Díaz
Dr. Manuel Espeso de Haro
Dr. Antonio Gutiérrez Cardo,
Dra. Francisca Hernández Mohedo
Dr. Manuel Jurado Chacón
Dr. José María López Ruiz
Dr. Juan Nicolás Rodríguez
Dr. Guillermo Rodríguez García
Dr. Jon Badiola González
Dra. Elisa López Fernández

Autoría:
Asociación Andaluza de Hematología y Hemoterapia

Coordina:
Triana Congresos

ISBN:
978-84-09-07986-5

Dep. Legal:
SE-229-2019
ÍNDICE

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRÓLOGO</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>9</td>
</tr>
<tr>
<td>OBJETIVOS Y ALCANCE</td>
<td>11</td>
</tr>
<tr>
<td>CAPÍTULO 1. DIAGNÓSTICO Y ESTRATIFICACIÓN PRONÓSTICA</td>
<td>13</td>
</tr>
<tr>
<td>1.1. DIAGNÓSTICO HISTOLÓGICO</td>
<td>13</td>
</tr>
<tr>
<td>1.2. PRUEBAS DIAGNÓSTICAS Y ESTUDIO DE EXTENSIÓN</td>
<td>13</td>
</tr>
<tr>
<td>1.3. ESTRATIFICACIÓN PRONOSTICA CLÁSICA EN LHc</td>
<td>15</td>
</tr>
<tr>
<td>1.4. NUEVOS BIOMARCADORES PRONÓSTICOS EN LHc</td>
<td>17</td>
</tr>
<tr>
<td>CAPÍTULO 2. TRATAMIENTO DE L. HODGKIN EN PRIMERA LINEA</td>
<td>25</td>
</tr>
<tr>
<td>2.1. ENFERMEDAD PRECOZ FAVORABLE</td>
<td>25</td>
</tr>
<tr>
<td>2.2. ENFERMEDAD PRECOZ DESFAVORABLE NO BULKY</td>
<td>27</td>
</tr>
<tr>
<td>2.3. ENFERMEDAD PRECOZ DESFAVORABLE BULKY</td>
<td>27</td>
</tr>
<tr>
<td>2.4. L. HODGKIN EN ESTADIOS AVANZADOS</td>
<td>28</td>
</tr>
<tr>
<td>CAPÍTULO 3. EVALUACIÓN DE RESPUESTA METABÓLICA</td>
<td>33</td>
</tr>
<tr>
<td>CAPÍTULO 4. L. HODGKIN EN RECAÍDA/ REFRACTARIO</td>
<td>37</td>
</tr>
<tr>
<td>CAPÍTULO 5. TRASPLANTE ALOGENICO EN LHc RECAÍDA/ REFRACTARIO</td>
<td>41</td>
</tr>
<tr>
<td>CAPÍTULO 6. NUEVOS AGENTES EN LHc EN RECAÍDA/ REFRACTARIO</td>
<td>47</td>
</tr>
<tr>
<td>CAPÍTULO 7. ABORDAJE TERAPÉUTICO DE LHc EN SITUACIONES ESPECIALES: EMBARAZO, EDAD AVANZADA Y VIH POSITIVOS</td>
<td>55</td>
</tr>
<tr>
<td>CAPÍTULO 8. COMPLICACIONES Y SECUELAS EN SEGUIMIENTO A LARGO PLAZO</td>
<td>63</td>
</tr>
</tbody>
</table>
Esta guía de práctica clínica nace de la inquietud y la necesidad de disponer de un documento de consenso de ámbito andaluz sobre el abordaje diagnóstico y terapéutico del paciente adulto con linfoma de Hodgkin Clásico (LHc), como una entidad clínica diferenciada y un ejemplo de neoplasia hematológica potencialmente curable, que globalmente representa el 20-25% de todos los linfomas, con una supervivencia estimada a los 5 años tras el diagnóstico que supera el 87% en nuestro medio. El objeto de esta guía es dar a conocer el documento de consenso elaborado por el Grupo Andaluz de Neoplasias Linfoides sobre Linfoma de Hodgkin Clásico (LHc), establecer las recomendaciones y procedimientos a llevar a cabo en el manejo de pacientes adultos con diagnóstico de LHc, mediante una correcta evaluación inicial de pruebas diagnósticas, estudio de extensión, estratificación pronóstica clásica, nuevos biomarcadores pronósticos y abordaje terapéutico en los distintos escenarios.

Todas las recomendaciones generales definidas en esta guía están basadas en la mejor evidencia científica disponible, según las guías de consenso nacionales e internacionales sobre esta entidad, así como en las más recientes actualizaciones de los estudios pivotales sobre abordaje terapéutico de LHc en primera línea, recaída/refractariedad, nuevos agentes y recomendaciones de trasplante autólogo y alogénico, basadas en documentos de consenso de American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015 y European Bone Marrow Transplant. EBMT 2015.

Hemos pretendido igualmente, adaptar las recomendaciones a nuestro medio y ámbito de acción, siendo el objetivo final de esta, reducir la variabilidad en la práctica clínica dentro de nuestro ámbito andaluz, que a su vez nos permitirá en un futuro, evaluar nuestros resultados en salud. Del mismo modo pretendemos que este documento de consenso pueda ser de utilidad no sólo dentro de nuestra Comunidad Autónoma, sino para todos aquellos que trabajamos en este campo de la hematología y que permita mejorar nuestra práctica clínica diaria, optimizando el manejo de pacientes con linfoma de Hodgkin.

Desde la AAHH, no podemos más que agradecer el esfuerzo de todos los compañeros que, bajo la Coordinación de la Dra. Hernández Mohedo, han dedicado su tiempo y saber a la elaboración de esta Guía para ponerla al servicio del conocimiento y, en consecuencia, para mejorar las expectativas asistenciales de los pacientes, verdadera razón de ser de nuestro ejercicio profesional sustentado en una arraigada vocación de servicio, en un realismo científico basado en las mejores evidencias y en la búsqueda constante de la máxima excelencia asistencial.

Así, pues, como representantes de nuestra Sociedad Científica, nos complace manifestar nuestra felicitación y reconocimiento a los autores de tan magnífica obra.

M. Luz Martino Galiana
Presidenta AAHH

Antonio Fernández Jurado
Consejero Delegado AAHH
INTRODUCCIÓN

El linfoma de Hodgkin (LH) es una neoplasia clonal de células B del centro germinal, que globalmente representa el 20-25% de todos los linfomas. La tasa de incidencia en la Unión Europea, ajustada por edad se estima en 21 casos nuevos por 1.000.000 habitantes/año y en España 30 casos/1.000.000 habitantes/año 1,2.

En nuestro medio presenta una distribución bimodal, con un pico en adultos jóvenes (entre 15 y 30 años) y otro en edad más avanzada (mayores de 55 años). En la actualidad la supervivencia en Europa, a los 5 años tras el diagnóstico, es superior al 80% y en España supera el 87% 1,4.
OBJETIVOS Y ALCANCE

El objeto de esta guía de práctica clínica de consenso elaborada por Grupo Andaluz de Neoplasias Linfoides sobre Linfoma de Hodgkin Clásico (LHc), en paciente adulto, es establecer las recomendaciones y procedimientos a llevar a cabo en el manejo de pacientes adultos con diagnóstico de LHc, mediante una correcta evaluación inicial de pruebas diagnósticas, estudio de extensión, estratificación pronóstica clásica, nuevos biomarcadores pronósticos y abordaje terapéutico en los distintos escenarios: LHc en primera línea, estrategias terapéuticas adaptadas al riesgo, LHc en recaída/refractariedad, indicaciones de trasplante autólogo de progenitores hematopoyéticos (TAPH) y alogénico (AloTPH) y manejo de nuevos agentes en pacientes con LHc en recaída tras TAPH y AloTPH.

Todas las recomendaciones genéricas van dirigidas a pacientes adultos con diagnóstico de LHc con edad comprendida entre 15 años e inferior o igual a 70 años, sin comorbilidades significativas, mientras que subgrupos especiales de pacientes mayores y/o frágiles, embarazadas, o VIH positivos, son abordados en un capítulo específico de esta guía y no se incluye al subtipo específico de Linfoma de Hodgkin de predominio linfocítico nodular (LHPLN).

Las recomendaciones definidas en esta GPC están avaladas por las Sociedades Científicas Española y Andaluza de Hematología y Hemoterapia y por Grupo Andaluz de Neoplasias Linfoides-GRANEL, basadas en la mejor evidencia científica disponible, según las Guías de consenso sobre LHC Española GELTAMO 2014, Europea ESMO 2018 y americana NCCN 2018, así como en las reciente actualización de estudios pivotales sobre abordaje terapéutico de LHc en primera línea, recaída/refractariedad, nuevos agentes y recomendaciones de trasplante autólogo y alogénico en LHc según American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015 y European Bone Marrow Transplant. EBMT 2015.

DOCUMENTOS GENERALES DE CONSULTA

➢ Guía de práctica clínica para el tratamiento de Linfoma de Hodgkin. Sociedad Española de Hematología y Hemoterapia. GELTAMO 2014.
1.1. DIAGNÓSTICO HISTOLÓGICO
Autores: Francisca Hernández Mohedo, Antonio Jesús Cruz Díaz, Carlos Solano Vercet

El linfoma de Hodgkin Clásico (LHc) es una neoplasia clonal de células B del centro germinal o post-centrogerminal, caracterizada por una baja proporción de células neoplásicas, célula de Hodgkin y Reed-Sternberg (CRS), que representan un 1-2% de la celularidad total, mientras que el resto de la celularidad está constituida por un infiltrado inflamatorio del microambiente tumoral de tipo reactivo y policlonal (histiocitos, eosinófilos, neutrófilos, mastocitos y linfocitos T). Este hecho dificulta un correcto diagnóstico mediante punción aspirativa con aguja fina (PAAF). El diagnóstico anatomopatológico de LHc, debe ser realizado sobre material histológico suficiente de biopsia, que permita llegar a un correcto diagnóstico 1-4.

Los subtipos histológicos incluidos dentro del LHc, según la clasificación OMS-2016 son: esclerosis nodular (EN), rico en linfocitos (RL), celularidad mixta (CM) y depleción linfocítica (DL) y representan el 95% de los LH, mientras que la variante de LH predominio linfocítico nodular (LHPLN) pertenece a otra categoría y representa aproximadamente un 5% de los LH 2.

Dentro del LHc, el subtipo más frecuente es la variante EN (50-60%), con predominio en mujeres jóvenes y frecuente afectación mediastínica, seguido de CM (16%), con frecuencia asociado a virus de Ebstein Barr (EBV), RL (10%) y DL (1%), asociado a inmunodepresión previa y/o virus de la inmunodeficiencia humana adquirida (VIH) 1-4.

Los marcadores fenotípicos del LHc por inmunohistoquímica, son positividad a CD30 y CD15 y otros marcadores de línea B como PAX5, Mum-1, CD138 y BCL-6 y negatividad a CD45. Adicionalmente un 20-30% de pacientes con LHc expresan el genoma del EBV integrado en CRS (LHc EBER positivo). Algunos casos pueden expresar un patrón heterogéneo CD20 positivo. El infiltrado celular polimorfo característico del LHc, es un reflejo de una respuesta inflamatoria/inmune antitumoral y varios trabajos recientes muestran la importancia pronóstica de la respuesta inmune celular T, así un predominio de respuesta citotóxica (TIA-1 y granzima B) se asocia a mejor pronóstico, mientras un ambiente supresor con expansión T regulatoria (FOX-P3), Linfocitos T PD1(+) y macrófagos (CD68) se correlaciona con peores respuestas a tratamiento 2.

Finalmente, debemos realizar el diagnóstico diferencial principalmente con entidades como hiperplasia linfóide interfolicular, linfoma B anaplásico de células grandes (LACG), linfoma B primario mediastínico, linfoma de la zona gris o intermedio y otros linfomas no hodgkin (LNH) 2.

El diagnóstico anatomopatológico de LHc, debe ser realizado sobre material histológico suficiente de biopsia (biopsia excisional o su defecto core-biopsia), no siendo adecuado el material obtenido por PAAF 1-4.

1.2. PRUEBAS DIAGNÓSTICAS Y ESTUDIO DE EXTENSIÓN
Autores: Francisca Hernández Mohedo, Manuel Espeso de Haro

PRUEBAS DE IMAGEN AL DIAGNÓSTICO

En el estudio de extensión basal al diagnóstico en LHc, la alta sensibilidad y especificidad de la tomografía por emisión de positrones – tomografía axial computarizada (PET-TAC), hacen que sea la prueba de imagen “gold standard” recomendada para el estadaje (PET-TAC basal), la utilización de esta técnica, por su alta sensibilidad (87-
100%) y especificidad (86,7-100%), puede suponer un cambio de estadaje de entre un 10% y 30% de pacientes, con respecto al TAC y nos permite un diagnóstico de imagen de la afectación ósea 1-4.

Todos los grupos cooperativos internacionales europeos y americanos (ESMO, NCCN) y guías de consenso españolas, actualmente recomiendan la utilización de la PET-TAC basal, mientras que análisis de nuevos parámetros metabólicos al diagnóstico, tales como volumen metabólico tumoral (VMT) y de la tasa de glicolisis (TG), como subrogados de la carga tumoral, son aún materia de investigación 1-4. Recientemente el grupo de A. Cottereau y col (Estudio HD-10), ha confirmado el fuerte valor pronóstico del VMT al diagnóstico, en pacientes con LHc con estadios precoces, lo que permite una mejor estratificación pronóstica de pacientes con enfermedad precoz favorable y desfavorable y muestra inferior SLP y SG a 5 años en pacientes con elevado VMT, definido como mayor de 147 cm³ (SLP y SG: 71% y 83% vs 92% y 98%), que deben ser considerados como enfermedad precoz de alto riesgo 6.

Mientras que en la reevaluación precoz de respuesta, como veremos en apartado específico, se mantiene la recomendación estándar de grupo de Lugano, de evaluar la respuesta funcional en PET-2 interim, según criterios de Deauville, si bien, en combinación con el análisis de VMT en PET basal, permite una mejora en la capacidad predictiva de PET interim y ser de ayuda en el diseño de estrategias adaptadas al riesgo en pacientes con LHc en estadios precoces 1-5.

Se considera mandatorio, al diagnóstico, la realización de PET-TAC basal como prueba de imagen gold standard para el estadaje clínico en LHc, ya que hasta en un 30% de pacientes puede suponer un cambio es estadaje inicial, principalmente en pacientes en estadios precoces.

BIOPSIA ÓREA AL DIAGNÓSTICO

En la actualidad las guías internacionales ESMO-2018, Lugano y NCCN-2018, no recomiendan la realización de biopsia ósea como prueba diagnóstica basal en pacientes con ausencia de captación medular ósea focal o difusa en PET basal, por su baja rentabilidad frente a la PET 3-4. Se considera que la indicación de biopsia ósea en estadaje inicial de LHc no es una recomendación generalizada en la actualidad, salvo muy casos individualizados, como presencia de captación medular ósea focal o difusa en PET basal o sintomatología B al diagnóstico o en caso de no disponibilidad de PET-TAC como prueba de imagen al diagnóstico 1-4.

En nuestro Grupo Cooperativo GRANEL sólo recomendamos la realización de biopsia ósea en LHc en estadios avanzados, con sintomatología B o en pacientes con citopenias y/o hiper captación medular focal o difusa en PET-TAC, para confirmar la posible infiltración medular, siendo válido el estadaje por PET 5-6.

No se recomiendan rutinaria de biopsia ósea como prueba diagnóstica basal en pacientes con estadios precoces y en ausencia de captación medular ósea en PET-TAC basal y/o sintomatología B, por su baja rentabilidad frente a la PET 3-4.

PRUEBAS COMPLEMENTARIAS BÁSICAS

Dentro de las pruebas analíticas y exploraciones complementarias recomendadas al diagnóstico, se encuentran 1-2:

- Hemograma y VSG
- Bioquímica general con perfil renal, hepático, LDH, albúmina, TSH y PCR
- Coagulación básica.
- Análisis de orina (sedimento y anormales).
- Serologías de EBV, HBV, VHC, VIH, CMV IgG, sífilis.
- Radiografía de tórax AP y lateral.
- Electrocardiograma.
- Pruebas funcionales respiratorias con DLCO (sólo en pacientes mayores de 60 años o con factores de riesgo, fumadores o con patología respiratoria).
- FEVI o Ecocardiograma. Hoja interconsulta (sólo en pacientes mayores de 60 años o con factores de riesgo).
- A todas las mujeres en edad fértil se les efectuará un test de embarazo (1 semana previa a QT).
- Tipaje HLA paciente y familiares (en candidatos a TPH).
OTROS EXÁMENES RECOMENDADOS

Dentro de los exámenes adicionales recomendados, antes de iniciar el tratamiento quimioterápico se encuentran la realización de una revisión bucodental, así como la recomendación de abandono de tabaquismo.

CONSEJO REPRODUCTIVO

Si bien el esquema estándar de quimioterapia en primera línea ABVD no se asocia a riesgo de infertilidad, recomendamos ofrecer consejo reproductivo y valorar la posible criopreservación de semen en varones y de ovocitos en mujeres, debido a que, si bien el riesgo de infertilidad con este esquema estándar muy bajo en varones y prácticamente inexistente en mujeres, debemos valorar la posibilidad de una intensificación terapéutica en pobres respondedores, con escalado a BEACOPP o en primariamente refractarios o a la recalaída (30% pacientes), así como la necesidad de quimioterapia de rescate y TAPH, con alto riesgo de infertilidad 1-4.

Recomendamos realizar consejo reproductivo a todos los pacientes en edad fértil y uso de agonistas de GnRH, en la prevención de infertilidad, en mujeres en edad fértil, cuando no disponemos de recursos para realizar criopreservación de ovocitos, para reducir el riesgo de fallo ovárico como secuela de tratamientos quimioterápicos intensivos.

I.3. ESTRATIFICACIÓN PRONÓSTICA CLÁSICA EN LHc

En el LHc se utiliza el sistema de estadaje de Costwold, equivalente al sistema clásico de Ann-Arbor modificado. La estratificación pronóstica de LHc se establece en función del estadio clínico: Localizados (I y II) o Avanzados (III y IV) y de la presencia o no de factores de riesgo, que permite categorizar a los pacientes con LHc en 3 grupos: (A) Enfermedad precoz sin factores de riesgo, (B) Estadios intermedios o enfermedad precoz con factores de riesgo y (C) Estadios avanzados 1-4.

ESTRATIFICACIÓN PRONÓSTICA EN ESTADIOS PRECOCESES DE LHc

En los estadios localizados o precoces, la categorización de grupos en riesgo difiere, según utilicemos la clasificación EORTC (European Organization for the Research and Treatment of Cancer), GHSG (German Hodgkin’s Study Group), NCI-C (National Cancer Institut of Canada) o NCCN (National Comprehensive Cancer Network)1-4.

<table>
<thead>
<tr>
<th>Factores de riesgo (*)</th>
<th>EORTC</th>
<th>GHSG</th>
<th>NCI-C</th>
<th>NCCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa mediastínica >1/3 del diámetro torácico.</td>
<td>A. Masa mediastínica >1/3 del diámetro torácico.</td>
<td>A. Masa mediastínica >1/3 del diámetro torácico.</td>
<td>" Histología diferente de PL/EN.</td>
<td>" Masa mediastínica >1/3 del diámetro torácico o cualquier masa >10 cm de diámetro.</td>
</tr>
<tr>
<td>VSG ≥50 sin síntomas B o ≥50 con síntomas B.</td>
<td>C. VSG ≥50 sin síntomas B o ≥50 con síntomas B.</td>
<td>C. VSG ≥50 sin síntomas B o ≥50 con síntomas B.</td>
<td>" ≥4 áreas ganglionares.</td>
<td>" ≥4 áreas ganglionares.</td>
</tr>
</tbody>
</table>

Favorables | Estadios I-II supradiaphragmáticos sin factores de riesgo | Estadios I-II sin factores de riesgo | Estadios I-II sin factores de riesgo | Estadios I-II sin factores de riesgo |

Desfavorables | Estadios I-II supradiaphragmáticos con ≥1 factor de riesgo. | Estadios I o IIA con ≥1 factor de riesgo. | Estadios I-II con ≥1 factor de riesgo. | Estadios I o IIA con ≥1 factor de riesgo. |

(*) Unidades de VSG en mm/1h
A pesar de no existir consenso sobre un determinado sistema de estratificación de riesgo de LHc en estadíos precoces, la mayoría de sistemas, definen como factores de riesgo en estadíos precoces: enfermedad voluminosa (≥10 cm), > 3 territorios afectos, enfermedad extranodal y síntomas B, mientras que a nivel de parámetro VSG, la EORTC diferencia punto de corte en ≥50 en ausencia de síntomas B y VSG > 30 en su presencia y GHSG, define estadio IIB en presencia de masa voluminosa y/o enfermedad extranodal como enfermedad avanzada.

Los síntomas B, asociados a peor pronóstico, son: fiebre persistente superior a 38°C, sudoración nocturna y/o pérdida de peso >10% en últimos 6 meses. Otros síntomas menos frecuentes, aunque característicos son: prurito, intolerancia al alcohol y síndrome constitucional y fatiga, pero no son considerados síntomas B.

ESTRATIFICACIÓN PRONÓSTICA EN ESTADIOS AVANZADOS DE LHc

En estadíos avanzados (III-IV), los factores de riesgo, son los definidos en el Índice pronóstico internacional de Hasenclever (IPS), siendo considerados de alto riesgo pacientes con score IPS ≥4, siendo los factores de riesgo:

1. edad ≥ 45 años,
2. sexo masculino,
3. estadio IV,
4. albúmina < 40 g/L,
5. hemoglobina < 105 g/L,
6. linfopenia < 600/microL y/o 8% en recuento diferencial y
7. leucocitosis ≥ 15.000/microL.

Hemos de considerar que la estratificación de riesgo clásica, está basada en la carga tumoral, definida como estadíos precoces (I y II) o avanzados (III-IV), y en la presencia o no de factores de riesgo, como masa voluminosa, número de áreas ganglionares afectas, enfermedad extranodal, sintomatología B, en PET-TAC basal, como subrogado de la carga tumoral y extensión de la enfermedad. La presencia de enfermedad voluminosa o extranodal en estadíos IIB, es considerada de alto riesgo y muchos autores incluyen este subgrupo de pacientes dentro de estadíos avanzados (Tabla 2).

Tabla 2: Estratificación Pronóstica según Estadios y Factores de Riesgo

<table>
<thead>
<tr>
<th>Estadio Ann Arbor</th>
<th>IA, IB, IIA</th>
<th>IIB</th>
<th>IIIA, IIB</th>
<th>IVA, IVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. RIESGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 3 áreas Nodales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSG elevada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad > 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulky Mediastínico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Extranodal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actualmente, existe consenso en relación a considerar estadio IIB, en presencia de masa voluminosa (punto de corte entre 7-10 cm de diámetro máximo) y/o enfermedad extranodal, como enfermedad avanzada, lo que va a determinar su abordaje terapéutico de modo similar a estadíos III y IV, mientras que para resto de pacientes con estadio IIB sin estos dos factores de riesgo, deberemos abordarlos como enfermedad precoz desfavorable.
1.4. NUEVOS BIOMARCADORES PRONÓSTICOS EN LINFOMA DE HODGKIN CLÁSICO:
Autores: Antonio Jesús Cruz Díaz, Francisca Hernández Mohedo, Anna Sureda Balari

A pesar de los avances terapéuticos realizados en LHc, se estima que aproximadamente un 20-30% de los pacientes son primariamente refractarios y/o recaen precozmente y un porcentaje similar de pacientes son sobretratados. Los factores pronósticos clásicos, abordados previamente, tienen por sí mismos una baja capacidad para detectar pacientes de alto riesgo al diagnóstico, por lo que desde hace ya décadas, se están realizando grandes esfuerzos para identificar nuevos biomarcadores que permitan diferenciarlos y establecer nuevas categorías de riesgo que guíen de una forma más racional las estrategias de tratamiento. Esta idea adquiere una mayor importancia aún con la reciente introducción de anticuerpos monoclonales e inhibidores del checkpoint al arsenal terapéutico frente al LHc. En la literatura se han descrito una gran cantidad de estos biomarcadores; sin embargo, se trata aún de un campo en desarrollo, que precisa de la confirmación en estudios adicionales, para evidenciar su reproducibilidad, identificar cuales aportan la mayor información pronóstica y así como mayor facilidad para ser incorporados a la práctica clínica diaria.

A) MICROAMBIENTE TUMORAL Y MECANISMOS DE ESCAPE ANTITUMORAL

El LHc representa una compleja enfermedad a nivel histológico, en el que la relación entre las células de Reed-Sternberg (CRS) y el microambiente tumoral (MAT) es solo parcialmente entendida, habiéndose evidenciado que en conjunto se establecen distintos mecanismos que permiten la progresión del tumor y el escape del sistema inmunológico, dificultando la acción del mismo al producir una situación de anergia linfocitaria. Diversas evidencias relacionan el estímulo inflamatorio crónico en la respuesta inmune innata, con una predisposición al desarrollo de LHc, así como la expansión de células del microambiente tumoral con acción inmunosupresora, como las células mieloides supresoras (MDSC), linfocitos T reguladores (Treg), lo que junto a la sobreexpresión de receptores coinhibidores del inmune checkpoint, como CTLA4 y PD-1 en los linfocitos infiltrantes de tumor (TILS) y PDL-1 ligando en células tumorales y del microambiente tumoral, podrían ser claves en la patogénesis del LHc y se plantean la hipótesis de que un bloqueo a estos niveles, podría restaurar la respuesta inmune antitumoral y consecuentemente mejorar los resultados clínicos en estos pacientes. Distintos trabajos señalan que la composición celular del MAT y sus mecanismos de interacción tienen alto impacto pronóstico.

A.1) Macrófagos tisulares:

En 1985, Ree y Kadin describieron patrones de tinción “en cacahuete” para macrófagos e histiocitos en el LHc y observaron que un infiltrado rico en macrófagos tiene un significado pronóstico adverso. Desde entonces son muchos los trabajos que han confirmado este hecho, la mayoría basados en la detección de estas células en tejido ganglionar mediante técnicas de inmunohistoquímica (IHQ) dirigidas hacia los marcadores CD68+ y CD163+.

Uno de los trabajos más interesantes es el publicado por Steidel et al en 2010, en el que mediante el análisis de expresión génica de muestras ganglionares, observaron que la sobreexpresión de genes asociados a macrófagos, entre los que destaca MMP11, junto a la presencia de infiltrado mayor del 5% de macrófagos tisulares CD38+, tienen importante capacidad pronostica, al encontrar que se asocian con menor supervivencia libre de progresión (SLP), fallos en tratamiento primario y tras rescate con TAPH, siendo independientes de otros factores pronósticos clásicos. Estos datos se confirmaron en una segunda cohorte de validación.

La mayoría de los estudios posteriormente publicados por diferentes grupos, confirman el valor pronóstico de este biomarcador, con resultados concordantes en la mayoría de estudios. Sin embargo, en algunos no han podido demostrar su capacidad pronóstica en parte porque aún no existe consenso sobre el punto de corte para la significación de este biomarcador (propuesto arbitrariamente <5%, 5-25%, >25%...), ni en los métodos de cuantificación (visual vs informatizada), que produce una alta variabilidad inter-observador. Tampoco se logra acuerdo con respecto a qué tinción utilizar (CD68+ y/o CD163+), puesto que se han observado diferentes grados de expresión de ambos marcadores en un mismo paciente, lo cual podría deberse a que CD68+ es un receptor de la familia de “scavenger”, que está presente en macrófagos, pero también en otras células del MAT, como mieloblastos, fibroblastos y algunas células T; y que CD163+ es un marcador más específico de macrófagos, identificando a los de tipo M2 activados.
Esta circunstancia motivó que el Intergroup E2496 realizara en 2012 un amplio ensayo multicéntrico, aleatorizado, fase III, en 287 pacientes con LHc en estadios avanzados tratados con ABVD y Standard V, en el que se revaluaba la capacidad pronóstica de los macrófagos tisulares, identificados mediante CD68+ y CD163+, diferenciando una cohorte de 143 pacientes para el ensayo y 144 para la validación de resultados. Se utilizó el sistema de análisis de imagen informático Aperio para la cuantificación del infiltrado. Los resultados indicaron que un aumento de expresión de ambos marcadores (>12.7% para CD68+ y >16.8% para CD168+) se asocia con menor supervivencia libre de fallo de tratamiento (SLF) y supervivencia global (SG). Los resultados fueron confirmados en la cohorte de validación y en el análisis multivariante. Se observó además que existe correlación con la edad avanzada, la infección por EBV e histología tipo celularidad mixta 17.

Por tanto, la cuantificación de macrófagos tisulares al diagnóstico constituye un biomarcador muy interesante, al tratarse de un método simple, fácil de incorporar a la práctica clínica diaria, con importante capacidad pronóstica, y que refleja adecuadamente la biología del tumor 11-17.

A.2) Células mieloides supresoras:

Las células mieloides supresoras (MDSC) constituyen un grupo heterogéneo de progenitores mieloides, precursors de monocitos/macrófagos y células dendríticas. Fenotípicamente se han identificado en humanos dos subpoblaciones de MDSC, denominadas M-MDSC, de estirpe monocítica y fenotipo característico (CD14+,CD15−/+,CD-11b+,CD33+/HLA-DR- Lin-) y G-MSC de estirpe granulocítica (CD14-CD15+CD11b+CD33+/HLA-DR-Lin-) y ambas se encuentran aumentadas en pacientes con cáncer frente a voluntarios sanos, paralelamente se observa un descenso en células T efectoras Th-1 (CD4), monocitos (CD14+CD11b+) y células dendríticas maduras (CD14+HLA-DR+). Estudios recientes muestran una expansión de subpoblaciones de M-MDSC y linfocitos T reguladores / FOXP3+ en pacientes con LHc y sus niveles basales son predictivos del riesgo de progresión tumoral, como una variable independiente, frente a la población G-MDSC, que parecen ser minoritarias y que no han demostrado una correlación clara con SLP y en pacientes con cáncer 9.

Las células MDSC, junto a linfocitos T reguladores (Treg) y células T helper (Th-1), constituyen una población heterogénea celular con propiedades inmunosupresoras. Entre las células supresoras, las MDSC juegan un papel clave como células inmunosupresoras mediante diversos mecanismos: liberación de citoquinas inhibitorias (IL-10 y TGF Beta), inhibición sobre células efectoras: linfocitos T (CD4 y CD8), células dendríticas, células NK, además están involucradas en la angiogénesis y metástasis a través de la liberación de MMP9 y TGF-Beta1 y su expansión se asocia a un peor pronóstico en cáncer 9-10.

Estudios recientes del grupo de Alexandra Romano et al., analizan el papel de las distintas subpoblaciones de MDSC como un biomarcador predictivo de respuesta y concluyen que éstas se encuentran elevadas con respecto a controles sanos y más significativamente en pacientes pobres respondedores a quimioterapia, siendo mayor el grado de correlación en la subpoblación de MDSC inmaduras CD34+, y concluyen que los niveles basales de células MDSC junto a los linfocitos T-reguladores en pacientes con LHc son predictivos del riesgo de progresión tumoral, como una variable independiente de riesgo 9.

A.3) Linfocitos infiltrantes del tumor (TILS):

La activación de la respuesta inmune antitumoral de las células T efectoras frente a antígenos asociados a tumores antígeno-específica, a nivel de la sinapsis inmunológica, es modulada por moléculas coestimuladoras, como CD28 en superficie de células T y sus ligandos CD80 y CD86 en células dendríticas presentadoras de antígenos (CPA) y señales coinhibidoras, como CTLA4 y PDL-1/PD-1, con acción coinhibitoria sobre linfocitos T efectores, a nivel del receptor TCR e inhibición competitiva del receptor coestimulador CD28 por su ligando CD8010.

En LHc, se ha podido demostrar la base genética de la inmunoevasión antitumoral de la CRS, consistente en la amplificación genómica a nivel de locus 9p24.1 y ganancia de copias PD-1/PD-1 Ligando (PDL-1/PDL-2). Esta alteración determina la sobreexpresión universal de PD-1 Ligando en células tumorales (CRS) e induce la sobreexpresión de
la vía de señalización JAK/STAT, que a su vez favorece la sobreexpresión de PDL-1, a nivel de las células tumorales y macrófagos asociados a tumores del microambiente tumoral que actúan como una barrera protectora a nivel del nicho tumoral, como mecanismos de inmunoevasión antitumoral 10.

La vía de señalización de PDL-1/PD-1 tiene una alta significación clínica en el LHc e implica un deterioro funcional de las células T efectoras antitumorales, produciendo un estado de anergia inmunológica y linfocitos T exhaustos. Distintos trabajos han relacionado la expansión de linfocitos T-PDL-1+ infiltrantes a nivel del microambiente tumoral (TILS) con peores tasas de SLP y SG en pacientes tratados con tratamientos convencionales, mientras que se ha documentado una disminución de niveles de linfocitos T-PDL-1+ circulantes durante el tratamiento en pacientes respondedores a quimioterapia 10.

El bloqueo de la vía de señalización PD-1/PDL-1, mediante nuevos agentes inmunoterapéicos, restaura la función efectora de células T infiltrantes de LHc. De acuerdo con estos resultados, la inmunidad celular exhausta observada en pacientes con LHc refractarios a quimioterapia, puede ser explicada por “agotamiento de células T efectoras” mediado por la activación de la vía de señalización PD-1/PD-L. Este hallazgo proporciona una estrategia inmunológica potencialmente eficaz para el tratamiento del LHc 10.

Por último, existe una evidencia creciente de que la desregulación inmune juega un papel importante en la fisiopatología del LHc. Diversos autores relacionan el estímulo inflamatorio crónico en la respuesta inmunológica con una predisposición al desarrollo de LHc, inducción de inmunotolerancia y supresión de la respuesta antitumoral mediada por células T y plantean la hipótesis de que un bloqueo a este nivel, podría restaurar la respuesta inmunológica antitumoral y mejorar los resultados clínicos en pacientes con cáncer. Se ha observado que las MDSC inducen la transformación de células Th1 y CD4 hacia T-reg, promueve la diferenciación hacia Th17 y suprime la actividad de las células NK, favoreciendo el escape inmunológico, estos mecanismos moleculares de escape inmunológico de la célula tumoral, pueden ser revertidos mediante agentes inhibidores del inmunocHECK-point, para modular la sobreexpresión de PDL-1 por CRS, lo que impide el reconocimiento de linfocitos T efectores 8-10.

Otros biomarcadores relacionados con el MAT en LHc, serían, TGF-Beta (transforming factor), que no sólo promueve el crecimiento tumoral, sino que inhibe la respuesta T efectora antígeno específica, favorecido el escape inmunológico antitumoral y la expresión de CD123 por células del MAT y CRS, presente en aproximadamente un 60% de casos de LHc y posible terapéutica, en el diseño de terapia dirigida mediante CAR-T cells, no dependientes de la expresión de moléculas HLA I y II 8.

B) EXPRESIÓN DE GENOMA DE EBV EN CÉLULAS TUMORALES DE LHc

En pacientes con LHc el estudio histopatológico basal al diagnóstico sobre tejido ganglionar, debemos incluir la determinación del genoma del EBV mediante técnica de hibridación in situ, lo que nos permite la demostración de positividad del ARN de EBV (EBER) en la mayoría de las células en aproximadamente un 30-40% de pacientes con LHc 18-21.

Estudios recientes, realizados por grupo de J. A. Kanackri, et al., en pacientes con LHc EBER positivo, parecen mostrar una fuerte correlación entre la expresión tisular de este marcador y la carga viral (CV) positiva a EBV en plasma (cuantificación de ADN de VEB >60 copias/100 ul. plasma). Esta correlación se ha observado fundamentalmente al diagnóstico, previo a tratamiento quimioterápico, siendo el grado de concordancia entre ambos marcadores elevado (88-96%), la sensibilidad de 72% y especificidad de 92%, por lo que consideran que puede ser un biomarcador subrogado de la carga tumoral en este subgrupo de LHc EBER positivo, dada la correlación directa entre la carga viral (CV) positiva a EBV en plasma y presencia del genoma de EBV en tejido tumoral 18-21.

Del mismo modo, otros autores han descrito la posible correlación de este biomarcador con la rapidez de respuesta a quimioterapia y postulan su utilidad como factor predictivo de respuesta a esquema quimioterápico. Sin embargo, estos estudios no son concluyentes, ya que, si bien la carga viral positiva de VEB al diagnóstico se correlaciona con su presencia en células tumorales, no existen datos concluyentes sobre su validez como biomarcador predictivo de respuesta o SLP 21.
Por último, la observación de un patrón diferencial respuesta inmune de tipo Th1/ antiviral en pacientes con LHc EBER positivo frente a LHc EBER negativos, así como la característica sobreexpresión de las vías JAK/STAT y PD1/ PDL-1, sugieren una disrupción de la respuesta antitumoral a nivel del microambiente tumoral en LHc asociado a EBV y plantea la posibilidad de nuevas estrategias terapéuticas en este subgrupo de pacientes

C) MARCADORES HUMORALES:

Recientemente se han estudiado distintos biomarcadores solubles en sangre periférica en LHc, la mayoría de ellos son citoquinas liberadas por la CRS o del MAT, que inducen un microambiente tumoral supresor y favorecen la inmunodepresión de las células tumorales. Su detección seriada al diagnóstico y durante el tratamiento pueden ser factores predictivos de respuesta a la QT. Estos biomarcadores pueden dividirse en 2 categorías: marcadores específicos de CRS y marcadores relacionados con el microambiente tumoral.

C.1) Marcadores específicos de CRS

sTARC-1 (CCL17): Citokina reguladora de la actividad del timo. TARC-1 es producida en gran cantidad por las CRS y células dendríticas (CPA) en el LHc, atrayendo células Th2 y Treg al microambiente tumoral. Se han observado niveles elevados en el 93% de los pacientes al diagnóstico, y sus niveles se correlacionan con el VMT por lo que tienden a ser más elevados en pacientes con enfermedad avanzada, voluminosa y síntomas B. Su descenso precoz, tras primer ciclo de tratamiento, se ha correlacionado con el grado de respuesta terapéutica y frente al resto de biomarcadores, parece ser el que se comporta mejor como factor predictivo de SLP y SG en LHc en primera línea o en recaída/refractarios y se postula que su uso como biomarcador seriado durante el tratamiento, podría complementar al PET-TAC.

Distintos estudios abordan su asociación con la respuesta de la enfermedad, comprando los niveles plasmáticos de TARC-1 soluble antes, durante y tras el tratamiento, con los hallazgos de imagen en PET-TAC en dichas fases. Se han estudiado series de pacientes de nuevo diagnóstico, con enfermedad localizada, avanzada, pacientes en segunda línea y TPH. De forma amplia, los autores concluyen que un descenso rápido y significativo de sTARC-1 tras primer ciclo de tratamiento, se correlaciona con respuesta metabólica completa en PET-TAC, así como mayores tasas de SLP y SG tras completar el tratamiento, sin embargo la mayor limitación de este biomarcador es que no existe consenso sobre el nivel o punto de corte a utilizar en seguimiento de pacientes.

sCD30: la expresión del receptor soluble CD30 (receptor de la familiar TNF) por las CRS, está presente en niveles aumentados en el 90% de los pacientes y aproximadamente un 25-30% presentan niveles > 100 - 200 U/mL, asociados a mal pronóstico. Algunos autores correlacionan niveles elevados con mayor carga tumoral y síntomatología B y su descenso precoz tras inicio de tratamiento, parece guardar buena correlación con la respuesta terapéutica.

sGal-1: Galectin-1 es una molécula liberada principalmente por las CRS, y en menor medida por otras células del MAT, como mecanismo de evasión antitumoral, por su capacidad inhibitoria de la respuesta inmune innata y adquirida, mediante la inducción de apoptosis de linfocitos Th1, Th17 y T citotóxicos, expansión de linfocitos Treg (CD4+/CD25+/FOXP3+/Treg), así como estimulando la secreción de citoquinas inmunosupresoras, L-10, e inhibición de secreción de citoquinas proinflamatorias IL-2, IFN-y, TNFalfa, lo que en conjunto favorece un microambiente tumoral inmunosupresor (Th2/Treg).

Los niveles séricos de este biomarcador se encuentran elevados en el diagnóstico en LHc, si bien su especificidad es menor y no está clara su correlación con la carga tumoral al diagnóstico y la respuesta al tratamiento.
C.2) Marcadores relacionados con el microambiente tumoral

sCD163: CD163 es un marcador de tipo antiinflamatorio de macrófagos asociados a tumor tipo M2, altamente expresado en el infiltrado inflammatory tumoral en LHc y la detección de este receptor soluble en sangre periférica, es un subrogado del grado de infiltración macrofágica tumoral. Tiene una alta sensibilidad y especificidad como biomarcador de LHc al diagnóstico, en comparación con sujetos sanos. Niveles significativamente elevados de sCD163 se han relacionado con la presencia de síntomas B, estadio avanzado, leucopenia y mayor cantidad en plasma de DNA-EBV32-34. Sin embargo, como biomarcador, sCD163 presenta un descenso más gradual durante el tratamiento que sTARC-1, que puede estar relacionado con la respuesta inflamatoria y activación macrofágica inducida por el tratamiento y su especificidad es inferior a TARC, pudiendo estar elevado en otras enfermedades inflamatorias 29, 32-34. Si bien, Jones et al, relacionan su descenso con la respuesta al tratamiento29. Por último, parece existir correlación con el descenso de sCD163 y DNA-EBV en LHc EBER positivo 29.

sCD83: Se ha documentado la expresión de niveles elevados de CD83 en más del 80% de los pacientes con LHc. Esta molécula está presente en la superficie de las CRS, así como en el infiltrado tumoral y se ha relacionado con la inhibición de la proliferación de linfocitos Th1. Además, se ha observado que los linfocitos T-CD83+ expresan mayor cantidad de PD1. Recientemente se ha comunicado la posible utilidad de este biomarcador, al observar que sus cambios en suero se correlacionan con la respuesta al tratamiento y se ha definido CD83 como una nueva diana terapéutica, comenzando a desarrollar estudios en este sentido 32.

IL-10 y otras interleukinas: La secreción de la citokina inmunosupresora IL-10 por las CRS y del microambiente tumoral, induce un microambiente tumoral inhibitorio de la respuesta Th1 (NK y T citotóxica) hacia respuesta Th2 (Treg supresora). Se ha observado que en torno al 40 - 50% de los pacientes presentan niveles elevados de IL-10, más frecuente en LHc con afectación extranodal y LHc EBER positivo y en los casos en que estos niveles persisten elevados tras completar el tratamiento presentan peores tasas de SLP y SG 8,10. Otras interleukinas: IL-6, IL-4, IL-5, CCL22 (MDC), CCL5. TNF-alfa, también están siendo evaluadas como posibles biomarcadores pronósticos en LHc 8,10.

D) ADN LIBRE CIRCULANTE EN PLASMA EN LHc:

Múltiples estudios muestran un aumento de ADN libre circulante en plasma (cf-DNA) de pacientes con distintos tipos de neoplasias, frente a controles sanos, lo que permite su uso como un biomarcador subrogado de la carga tumoral 35-39. Mediante esta técnica no invasiva de “biopsia líquida” podríamos cuantificar el ADN tumoral procedente de las CRS en plasma. Niveles significativamente superiores ADN libre circulante en plasma en LHc frente a controles sanos (punto de corte > 29,4 ng/mL), se correlacionan con la carga tumoral al diagnóstico, con la dinámica de crecimiento tumoral y muerte celular y con el pronóstico (PFS a 2 años 62% vs 95%;p=0,01) siendo mayor la correlación en estadios avanzado, síntomas B y subtipo EN (necrosis tisular) 35-39. Cabe destacar los resultados del trabajo del grupo de Spina y col. en 2018, en el que estudiaron el perfil mutacional en cf-DNA en 112 pacientes de LHc como fuente accesible de ADN tumoral en LHc y correlacionan perfil mutacional en cf-DNA con el observado en ADN genómico de CRS (gDNA), obtenido mediante microdissección inmunohistoquímica de CRS (CD30+) y observan una concordancia del 87,5% entre mutaciones observadas en cf-DNA y gDNA de CRS 39, describiendo mutaciones recurrentes específicas en las vías de señalización JAK-STAT (STAT6) y NF-kappa B (TNFAIP3) y IP3K/AKT (ITPKB), como las más frecuentemente implicadas, y como, la activación constitutiva de estas vías de señalización, juega un papel importante en la biología del LHc, además un descenso 100 veces sobre niveles basales de cf-DNA, tras 2º ABVD, se correlaciona con respuestas favorables, lo que combinado con PET-interim, mejora su capacidad predictiva, reduciendo el porcentaje de falsos negativos y falsos positivos, asociados a pseudo-progresión con inhibidores de check-point 8,39. Los resultados publicados por grupo de Hohaus, y col. reflejan que la disminución >2-log de los niveles de cf-DNA tumoral frente a basal, tras 2ºABVD se asocian a superior SLP 37. Además, en pacientes con LHc EBER positivo, la
detección de CV de EBV en plasma también es un biomarcador subrogado de la carga tumoral en este subgrupo de LHc, dada la correlación directa entre la carga viral (CV) positiva a EBV en plasma y presencia del genoma de EBV en tejido tumoral 18-19.

Sin embargo, son necesarios nuevos biomarcadores predictivos de respuesta en LHc en recaída/ refractariedad, en este sentido, recientemente, Chan y col. han descrito un modelo pronóstico, basado en perfiles de expresión génica, denominado RHL30, que muestra fuerte fuerte concordancia entre perfil génico y SLP a 5 años post-TAPH, lo que podría ser utilizado para definir pacientes con alto riesgo de recaída post-TAPH, candidatos a terapias de consolidación como brentuximab vedotina 40.

BIBLIOGRAFÍA

Desde el punto de vista epidemiológico, el LHc representa aproximadamente un 10% de casos de nuevo diagnóstico de linfomas, siendo el resto linfomas no Hodgkin (LNH), si bien en grupo de pacientes adolescentes y jóvenes, con edad comprendida entre los 15 y 20 años, el linfoma es el tipo de cáncer más frecuente, con una frecuencia del 21% sobre el total de neoplasias, siendo el 75% de estos casos LHc y 25% restante LNH 1-5.

El abordaje terapéutico estándar, el primera línea, en la mayoría de los países europeos y América (Guías NCCN-2018, ESMO-2018 y GELTAMO-2014), es el esquema quimioterápico ABVD (Adriamicina, Bleomicina, Vinblastina y Dacarbacina), siendo la intensidad de este esquema (número de ciclos administrados), dependiente de la extensión de la enfermedad y presencia o no de factores de riesgo al diagnóstico.

Como esquema alternativo, el grupo alemán para el estudio del linfoma de Hodgkin (GHSG) emplea como esquema estándar BEACOPP escalado (Bleomicina, Etopósido, Adriamicina, Ciclofosfamida, Vincristina, Procarbacina y Prednisona) (BEACOPP-e), que si bien producen un aumento en 10-15% en probabilidad de supervivencia libre de enfermedad (SLE) a 3 años, en estadios avanzados, ésta es a costa de una mayor toxicidad a corto y largo plazo (neoplasias secundarias, síndromes mielodisplásicos) y secuelas (toxicidad pulmonar, cardiopatía e infertilidad). Por ello, en Europa, mayoritariamente se ha optado por un esquema menos intensivo, con la posibilidad de un rescate precoz, en estrategias guiadas por PET, si bien un reciente metaanálisis publicado por el grupo alemán, demuestra la superioridad de BEACOPP escalado en términos de SLE y de SG, por lo que en la actualidad es considerado por algunos grupos una alternativa terapéutica adecuada en primera línea, sobre todo en estadios avanzados con elevado IPS, sin factores de riesgo y sin comorbididades. Como alternativa, la mayoría de grupos, lo han incorporado dentro de estrategias terapéuticas adaptadas al riesgo, guiadas por PET interim (PET-i), para aquellos pacientes con PET-i positivo tras ABVD, definido con Deauville score (DS) 3-5 1-5.

2.1. ENFERMEDAD PRECOZ FAVORABLE

Pacientes con enfermedad precoz favorable tienen un excelente pronóstico con tasas de curación superiores al 90%. El esquema terapéutico estándar en LHc con enfermedad precoz favorable, es decir estadios I y II-A, sin factores de riesgo asociados y en ausencia de síntomas B, es básicamente un tratamiento combinado quimio- radioterápico, consistente en 2 ciclos de ABVD seguido de consolidación con radioterapia 20 Gy sobre campo afecto (RT-IF), por superioridad frente a la quimio o a la RT solas 1-5.

Se recomienda adicionalmente, la reevaluación mediante PET-TAC tras 2º ABVD (PET-i), que ha de ser negativa según Deauville score (DS 1-2) y posterior consolidación con RT-IF 20 Gy. Si PET-2 es positiva (DS 3), se recomienda consolidación RT y si (DS 4), se valorará posibilidad de escalado terapéutico. Por último, si DS es 5, se recomienda rebiopsiar lesión residual y considerar intensificación terapéutica (NCCN-2018)1-8.

La omisión de la RT de consolidación sobre campo afecto, en el tratamiento de los estadios precoces, es materia de controversia y ha sido analizada en múltiples estudios prospectivos (Tabla-1). En este sentido, el estudio NCRI-RA-PID, del grupo británico, analiza, en una estrategia guiada por PET-i, el impacto de eliminar la RT en estadios precoces no voluminosos, con o sin factores de riesgo, mediante la aleatorización de pacientes con PET-i negativo tras 3 ciclos de ABVD, a consolidación o no RT, siendo la SLE a 3 años en pacientes con PET-i negativo (Deauville 1-2) del 94.6% con RT vs 90.8% en rama experimental sin RT. En conclusión, aunque este estudio muestra resultados consistentemente favorables para el no tratamiento de RT, se sigue recomendando la RT de consolidación.
excelentes en un 90% de pacientes con la omisión de la RT, no pueden demostrar la no inferioridad de la frente a estándar ABVD más RT de consolidación en enfermedad precoz favorable 5-6.

En la reciente actualización de estudio fase II CALGB 50604/SWOG, que analiza igualmente la omisión de RT en estadios precoces no voluminosa, con PET-i negativo (Deauville 1-3), tras 2 ciclos de ABVD, en los cuales consolidan con 2 ciclos adicionales de ABVD, mientras en casos PET-i positivo, escalan a BEACOPP-e x 2 ciclos y consolidan con RT (30 Gy). Los resultados obtenidos en rama experimental PET-i negativa sin RT son excelentes con SLP a 3 años del 92%, mientras que debido al escaso porcentaje de pacientes PET-i positivos (9%), en los que se realiza escalado a BEACOPP-e, si bien los resultados son favorables, con SLP a 3 años 62%, este estudio, no permiten obtener conclusiones sobre la superioridad de este esquema7. Esta misma estrategia es analizada en estudio EORTC/LYSA/FIL H10, con rama experimental sin RT en pacientes PET-i negativos, que son consolidados con 2 o 4 ciclos adicionales de ABVD en función de factores de riesgo y en que los resultados de SLP a 5 años fue del 99% en la rama estándar vs. 87,1% en la rama experimental, sin poder demostrarse la no-inferioridad, con ventaja en SLP a 5 años para la terapia combinada de 12% en favorables y 3% en desfavorables5.

Por otro lado, el estudio HD-10 del GHSG, demostró que no existen diferencias significativas en términos de tasa de respuestas globales, SLE y SG en pacientes con enfermedad precoz sin factores de riesgo, entre dosis de 30 vs 20 Gy de RT sobre campo afecto. La reciente actualización de este estudio muestra respuestas duraderas con SLP a 10 año del 87% y SG del 94%, sin diferencias entre ambos grupos, por lo que el estándar actual para pacientes en estadio precoz favorable es 2 ciclos de ABVD seguido de 20 Gy de RT sobre campo afecto 5,8.

<table>
<thead>
<tr>
<th>Tabla 1: Estudios prospectivos basados en estrategias guiadas por PET-i en Estadios Precocos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
</tr>
<tr>
<td>Timing of PET After ABVD</td>
</tr>
<tr>
<td>PET-Negative Deauville Score</td>
</tr>
<tr>
<td>Percent PET-Negative</td>
</tr>
<tr>
<td>Treatment Regimens</td>
</tr>
<tr>
<td>PFS, %</td>
</tr>
<tr>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>Median Follow-up, Years</td>
</tr>
<tr>
<td>U.K. RAPID 77 (602 patients)</td>
</tr>
<tr>
<td>3 cycles</td>
</tr>
<tr>
<td>3 ABVD + 30 Gy IFRT (standard)</td>
</tr>
<tr>
<td>94.6 (ITT), 97.1 (PP)</td>
</tr>
<tr>
<td>3 ABVD (PET-)</td>
</tr>
<tr>
<td>90.8 (ITT), 90.8 (PP)</td>
</tr>
<tr>
<td>1.57 (0.94–2.97)</td>
</tr>
<tr>
<td>4 ABVD + 30 Gy IFRT (PET+)</td>
</tr>
<tr>
<td>87.6</td>
</tr>
<tr>
<td>2.36 (1.13–4.95)</td>
</tr>
<tr>
<td>EORTC H10F 24,25 (754 patients)</td>
</tr>
<tr>
<td>2 cycles</td>
</tr>
<tr>
<td>3 ABVD + 30 Gy INRT (standard)</td>
</tr>
<tr>
<td>99.0</td>
</tr>
<tr>
<td>4 ABVD (PET-)</td>
</tr>
<tr>
<td>87.1</td>
</tr>
<tr>
<td>15.8 (3.8–66.1)</td>
</tr>
<tr>
<td>2 ABVD + 2 EB + 30 Gy INRT (PET+)</td>
</tr>
<tr>
<td>90.6</td>
</tr>
<tr>
<td>0.42 (0.23–0.74)</td>
</tr>
<tr>
<td>EORTC H10U 26,27 (1,156 patients)</td>
</tr>
<tr>
<td>2 cycles</td>
</tr>
<tr>
<td>4 ABVD + 30 Gy INRT (standard)</td>
</tr>
<tr>
<td>92.1</td>
</tr>
<tr>
<td>6 ABVD (PET-)</td>
</tr>
<tr>
<td>89.6</td>
</tr>
<tr>
<td>1.45 (0.8–2.5)</td>
</tr>
<tr>
<td>2 ABVD + 2 EB + 30 Gy INRT (PET+)</td>
</tr>
<tr>
<td>90.6</td>
</tr>
<tr>
<td>0.42 (0.33–0.74)</td>
</tr>
<tr>
<td>CALGB-50604 28 (164 patients)</td>
</tr>
<tr>
<td>2 cycles</td>
</tr>
<tr>
<td>4 ABVD (PET-)</td>
</tr>
<tr>
<td>92</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>2 (1.8–20.1)</td>
</tr>
</tbody>
</table>

En la actualidad, el estándar terapéutico en LHc en estadios precoces sin factores de riesgo, es la terapia combinada con 2 ciclos de ABVD seguida de consolidación con radioterapia sobre campo afecto 20Gy.

La omisión de la consolidación RT sobre campo afecto, en una estrategia guiada por PET, en pacientes con PET-i negativa (DS ≤2), supondría consolidar con 2 ciclos adicionales de ABVD y deberá considerarse principalmente en casos en los que la RT suponga riesgo de secuelas y/o comorbilidad, ya que la terapia combinada presenta ligera ventaja en SLP.

En casos con PET-i positivo (DS ≥3), debemos plantear la opción de ABVD o escalado a BEACOPP-e x 2 ciclos, seguido de RT 30 Gy, siendo el escalado recomendado sólo en DS 4, en pacientes jóvenes y sin comorbilidades, mientras que en casos con DS 5, la recomendación será rebiopsiar 7,8.
2.2. ENFERMEDAD PRECOZ DESFAVORABLE NO VOLUMINOSA

El estándar clásico en pacientes con enfermedad precoz desfavorable no voluminosa es 4 ciclos de ABVD seguidos de consolidación con RT sobre campo afecto de 30Gy^1-5.^

La aplicación de estrategias terapéuticas adaptadas al riesgo y guiadas por PET en enfermedad precoz desfavorable, tienen como objetivo reducir los efectos tóxicos tardíos de la quimio y RT, sin comprometer la eficacia terapéutica, así como la detección precoz de pobres respondores en PET-i tras segundo ciclo ABVD^5-8.^

Un reciente metaanálisis de estudios HD9, HD14 del GHSG, HD2000 y GSM-HD del grupo italiano, compara los resultados de ABVD versus BEACOPP-e en pacientes con LHc en estadio precoz desfavorable y estadios avanzados y en este no hubo diferencias significativas en términos de SG entre ambos esquemas (HR = 0.80; 95% CI 0.59 a 1.09), debido a que si bien, existe un beneficio en SLE con el esquema BEACOPP-e (HR= 0.53; 95% CI 0.44 a 0.64), la mayor toxicidad hematológica y extrahematológica y riesgo de segundas neoplasias, fue significativamente mayor con esquema BEACOPP-e^5-9.^

La actualización a 5 años del estudio prospectivo y randomizado EORTC/LYSA/FIL-HD10, en pacientes con estadios precoces estatificados en función de la presencia de factores de riesgo como favorables (F) y desfavorables (D), confirman la superioridad de rama experimental con escalado a BEACOPP-e en pacientes PET-i positivo. En ambos grupos, la rama experimental contemplaba la omisión de RT, en casos PET-i negativo, consolidando con 2 ciclos adicionales ABVD en grupo favorable y con 4 ciclos adicionales en grupo desfavorable. En ambos grupos, el riesgo de recaída era superior en PET-i positivo frente a la estrategia estándar de ABVD +RT (SLE a 5 años 77.4% ABVD + RT vs 90.6% BEACOPP-e + RT; p = .002), si bien la SG no mostraba diferencias significativas y la incidencia de neutropenia febril era superior en esquema BEACOPP-e (23.9% vs 11.1%). Mientras que la rama experimental en pacientes PET-i positivo, tras la omisión de consolidación RT, mostraba ligera inferioridad en SLP (99.0% vs 87.1%), sin diferencias en SG, por lo que recomiendan individualizar la consolidación radioterápica^8.^

El estándar terapéutico en pacientes con enfermedad precoz desfavorable y no voluminosa, es 4 ciclos de ABVD seguida de consolidación con RT sobre campo afecto 30 Gy.

La estrategia guiada por PET-i, consistirá en la administración de 2 ciclos iniciales de ABVD, seguido de reevaluación PET-i, y si este es Negativo (DS ≤ 2), consolidar con 2 ciclos adicionales de ABVD seguidos de RT 30 Gy o 4 ciclos adicionales sin RT

Si PET-i es positivo (DS ≥3), se podrá plantear ABVD o un escalado terapéutico BEACOPP-e x 2 ciclos adicionales, seguido de RT 30G, siendo la recomendación de escalado limitada a pacientes jóvenes y sin comorbilidades,, debido la superioridad de este esquema frente al estándard ABVD.

Si PET-i es positivo (DS 5) la recomendación será rebiopsia^5-9.^

Consideramos que se debe individualizar el empleo de estrategias adaptadas al riesgo en estadios precoces, en función de factores de riesgo al diagnóstico y DS, por riesgo potencial elevado de efectos secundarios de la RT de consolidación, sobre todo en mujeres jóvenes.

2.3. ENFERMEDAD PRECOZ DESFAVORABLE CON MASA VOLUMINOSA:

En la clasificación de Cotswolds, se definen como masa mediastínica voluminosa aquella con un diámetro máximo mayor 10 cm ó 1/3 ó 0,35 del diámetro torácico. La mayoría de los grupos cooperativos EORTC, GELA y GHSG, incluyen a este subgrupo de pacientes con enfermedad precoz desfavorable, junto a grupo de pacientes con enfermedad avanzada, mientras que la NCCN-2018, los considera de modo diferenciado.
Si bien, la mayoría de estudios clásicos, concluyen en las ventajas de terapia combinada con quimioterapia ABVD x 4 ciclos seguida de RT sobre campo afecto. En la actualidad, se plantean como alternativas, estrategias guiadas por PET-i y tras finalización del esquema terapéutico, con abordaje similar al de pacientes en estadios avanzados. Los estudios en fase II Alliance 50801 y GITIL/FIL HD0607, evalúan el uso de consolidación RT en estadios precoces con enfermedad voluminosa mediastínica, tras 2 ciclos iniciales de ABVD, seguidos de reevaluación PET-i, de modo que pacientes PET-i negativo, son consolidados con 4 ciclos adicionales de ABVD o como alternativa, 2 ciclos ABVD seguidos de RT, mientras que pacientes con PET-i positivo (DS 4-5), reciben BEACOPP escalado, seguido o no de RT. En ambos estudios, se cuestiona la utilidad de la RT de consolidación en pacientes con PET-i negativo, si bien, estas estrategias adaptadas al riesgo no son consideradas actualmente un estándar terapéutico y debemos individualizarlas 9,12.

En los estudios precoces desfavorables con masa voluminosa mediastínica, se recomienda una estrategia terapéutica similar a estadios avanzados: 2 ciclos iniciales de ABVD, reevaluación con PET-i, y si es negativo, consolidar con 4 ciclos adicionales de ABVD.

Los pacientes con LHc en estadio avanzado con masa voluminosa al diagnóstico que alcanzan RC con PET negativa tras ABVD o BEACOPP, se podrá considerar opcionalmente la consolidación con RT complementaria 1-5, 9,12.

2.4. L. HOGKIN EN ESTADÍOS AVANZADOS

Los estadios III y IV son considerados conjuntamente como estadios avanzados 10. La estratificación pronostica International Prognostic Score de Hasenclever (IPS Score), considera alto riesgo score IPS ≥4. La SLP y SG con esquema estándar ABVD, de alrededor del 70% y 82-90% respectivamente, disminuye progresivamente conforme aumenta el número de factores de riesgo, sin embargo, este score no nos permite identificar un grupo de especial pacientes susceptible de tratamiento individualizado10-12.

Más recientemente, Gallamini y col, confirman el fuerte impacto pronóstico de PET-i negativo, que supera al score pronóstico IPS, en su capacidad predictiva de SLP a 2 años, 95% para PET-i negativo vs 12.8% positivo 5,12.

En Estados Unidos y Europa, el régimen estándar en primera línea es ABVD, por su inferior toxicidad aguda y tardía frente a BEACOPP-e o Stanford V, como se demuestra en estudio de seguimiento HD-2000. Por otro lado, en un reciente metaanálisis publicado en 2017 de 5 ensayos clínicos comparativos de ABVD frente a BEACOPP-e, los autores concluyen, que el régimen BEACOPP-e en primera línea, muestra superioridad en términos de SLE y SG para pacientes en rango de edad entre los 16 y 60 años 5,11-12. El esquema Stanford V, en el análisis del North American Intergroup, no mostró superioridad frente ABVD, con tasas de remisión completa (RC) del 73% vs 69%, respectivamente y con una mediana de seguimiento de 6,4 años, tampoco observaron diferencias en cuanto a SLP (74% vs. 71%), SG (88% para ambos grupos) o toxicidad. Sin embargo, en los pacientes con un índice pronóstico internacional IPS ≥4, la supervivencia libre de fallo de tratamiento (SLFT), fue significativamente inferior con Stanford V vs. ABVD (58% vs. 75%, respectivamente)1-4.

El esquema inicial recomendado es ABVD, siendo el plan terapéutico 6 ciclos, con la recomendación de reevaluación precoz mediante PET-i.

El impacto real de otros regímenes más intensivos, a pesar de que suponen un incremento a nivel de SLP y SG, sobre todo en estadios avanzados con IPS ≥4, requiere de un seguimiento más prolongado, debido a que este beneficio, debe ser balanceado frente a su mayor toxicidad a corto y largo plazo, así como secuelas cardíacas, pulmonares, endocrinológicas y segundas neoplasias 1-5,11.

La aplicación de estrategias terapéuticas适应adas al riesgo, en estadios avanzados, también se ha explorado por distintos grupos cooperativos e igualmente están destinadas a reducir la toxicidad a corto y largo plazo del tratamiento quimioterápico, sin comprometer su eficacia.

La mayor la toxicidad y secuelas a largo plazo de esquemas más intensivos, tipo BEACOPP-e frente al esquema estándar ABVD, son básicamente los fundamentos de una estrategia adaptada al riesgo, guiadas por PET-i, con la
doble finalidad de realizar un desescalado en pacientes respondedores precoces y escalado terapéutico en pobres respondedores, en función del grado de respuesta metabólica en PET-i, extensión de enfermedad y estratificación pronóstica al diagnóstico.10-20

En primer lugar, debemos considerar que los estudios EORTC/LYSA/FIL-HD10, en los que se fundamentan las estrategias adaptadas al riesgo en estadios avanzados, se basan en esquema inicial BEACOPP-e y posterior desescalado a ABVD en pacientes PET-i negativos, y muestran la superior validez del PET-i negativo, en pacientes sometidos a esquemas más intensivos, con un elevado valor predictivo negativo (VPN), que se traduce en SLP a 3 años del 95% en LHc PET-i negativo (DS 1-3) vs 60% en PET-i positivo (DS ≥ 4)12-15.

Otros estudios basados en ABVD y estrategias adaptadas al riesgo en estadios avanzados, como Southwest Oncology Group (SWOG), S0816, y United Kingdom RATHL trial (UK RATHL), consistirían en un desescalado en pacientes PET-i negativos (DS 1-3), con la omisión de Bleomicina (RATHL trial) y en casos PET-i positivos (DS 4-5), escalado a BEACOPP-e21-24.

Más recientemente, el estudio GITIL/FIL HD0607, ha confirmado el inferior VPN de PET-i negativo tras 2 ciclos iniciales de ABVD, ya que un 13% de pacientes con PET-i negativo sufren recaída o fallo primario tras finalizar esquema ABVD, sobre todo en subgrupo de pacientes en estadios avanzados y factores de riesgo al diagnóstico24.

El estudio RATHL, muestra que es posible la omisión de Bleomicina (AVD), tras PET-i negativo, con el fin de reducir toxicidad pulmonar, con SLP a 3 años similar tras la omisión de Bleomicina en pacientes PET-i (-)(SLE a 3 años 85.7% vs 84,4%;p>0.05) y concluyen que en pacientes de buen pronóstico, la omisión de Bleomicina no compromete los resultados ni aumenta las tasas de recaídas, mientras confirman, el inferior VPN de PET-i negativo en pacientes en estadios avanzados, con esquemas menos intensivos como ABVD25.

Globalmente, los resultados de estos estudios son similares, SLE a 3 años del 85-95% en PET-i (-) con ABVD estándar y en 15- 20% de los pacientes con PET-i negativo sufren recaída o fallo primario tras finalizar esquema ABVD, sobre todo en subgrupo de pacientes PET-i (-) con ABVD estándar y en ESPORE, de 65-72%, si bien, son muy diferentes según score Deauville (DS 4: 72% vs DS-5 35% ; SLE a 3 años), y sólo recomiendan la intensificación a BEACOPP-e, en PET-i con DS 421-26.

Frente a esquemas intensivos, tipo BEACOPP-e, se plantean en el contexto de ensayos clínicos, nuevas aproximaciones basadas en la adición de brentuximab vedotina a esquema AVD, con resultados prometedores (ECHELON-1), también en estrategias secuenciales27-29.

En estrategias guiadas por PET-i, en estadios avanzados tratados con esquema ABVD estándar, se recomienda realizar desescalado terapéutico en casos PET-i negativo (DS ≤3), con la omisión de Bleomicina a partir de 3º ciclo, sobre todo en casos de bajo riesgo IPS (IPS ≤ 3)17-24.

En LH en estadios avanzados, se considera PET-i negativo (DS ≤3) vs PET-i positivo (DS ≥ 4) y recomendamos individualizar su abordaje terapéutico en función de edad y sexo y consensuar con el paciente el balance riesgo/beneficio de terapias intensivas12-15.

En casos con PET-i positivo (10-20%; DS ≥4), recomendamos considerar el escalado a 4 ciclos de BEACOPP-e, sólo en pacientes menores de 60 años y sin comorbilidades21-26.

En pacientes con DS-5, se recomienda rebiopsiar, ya que probablemente el beneficio de un escalado terapéutico será muy limitado18-24.

No recomendamos la consolidación RT en LHc en estadios avanzados, salvo en pacientes con masa residual > 2.5 cm y PET positiva de fin de tratamiento.
BIBLIOGRAFÍA

6. Radford J, Sally Barrington, Counsell N et al. Involved Field Radiotherapy Versus No Further Treatment in Patients with Clinical Stages IA and IIA Hodgkin Lymphoma and a ‘Negative’ PET Scan After 3 Cycles ABVD. Results of the UK NCRI RAPID Trial. Blood 2012 120:547

EVALUACION DE RESPUESTA METABÓLICA EN PET INTERIM Y FIN DE TRATAMIENTO

Autores: Antonio Gutiérrez Cardo, José María López Ruiz, Francisca Hernández Mohedo

3.1. EVALUACION DE RESPUESTA METABÓLICA EN PET INTERIM

Una de las estrategias actuales destinada a reducir los efectos secundarios a corto y largo plazo del tratamiento, sin comprometer su eficacia consiste, en analizar la respuesta precoz tras 2º ciclos ABVD (PET-2), que predice de forma excelente la evolución de los pacientes inicialmente tratados con este. En la reevaluación de la respuesta, la recomendación estándar se guía por los criterios de Deauville (escala de puntuación de 1-5), dado que múltiples estudios muestran el impacto pronóstico del PET precoz negativo, en el seguimiento de pacientes con LHc, con supervivencia libre de progresión (SLP) a 3 años del 95% en PET-2 negativos vs 18% en PET-2 positivos, (p=0.0001) y valor predictivo negativo (VPN) del 95% en PET-2 negativo vs 28% en PET-2 positivo 7-8,15-16.

Por tanto, en la actualidad existe consenso acerca de los criterios de interpretación de la PET interim y de fin de tratamiento según la escala de Deauville, usando como referencia la captación mediastínica y hepática (Deauville criteria) (Figura -1)16.

Figura. 1. Escala Deauville (5 puntos)
1.- Ausencia de captación
2.- Captación ≤ Mediastino
3.- Captación > Mediastino ≤ Hígado
4.- Moderado incremento en captación respecto a hígado
5.- Intenso incremento en captación respecto a hígado o nuevas áreas de captación
X.- Nuevas áreas de captación de improbable relación con el linfoma.

La comparación con los valores de referencia en mediastino, hígado y las mediciones de las lesiones se realizan con respecto al SUVmax especialmente en la guía de la valoración como Deauville 4 ó 5.

Se ha llegado al consenso de considerar como Deauville 5 cuando el valor de SUVmax supera entre dos y tres veces la referencia del hígado.

Como aclaración, la interpretación estándar del límite que define una PET como negativa (≤3) y positiva (≥4), si bien, algunos autores consideran que la interpretación de un valor de 3 dependerá de si la planificación terapéutica es escalado de dosis, en cuyo caso un Deauville 3 es considerado negativo, para evitar sobretatamiento, mientras que si el fin es desescalado de dosis, un Deauville 3, es considerado positivo, lo cual permitirá una lectura más restrictiva o permisiva respectivamente 16. Esta valoración es fundamentalmente aplicable a ensayos clínicos pero progresivamente se está trasladando a la clínica.

En las lesiones residuales la persistencia de cierto grado de captación ha supuesto dificultades en la valoración de los estudios PET. De la experiencia de distintos grupos se ha intentado uniformar la interpretación que permita una correcta predicción del desarrollo de la enfermedad en dicha localización. El entorno en el que se sitúa dicha captación influencia la valoración relativa o visual que se hace de esta captación, por lo que distintos observadores pueden informar valores de Deauville diferentes. Una lesión residual rodeada de un entorno con mayor captación puede ser interpretada como negativa, mientras que el mismo grado de captación en un entorno de baja
intensidad, es observada como positiva, aun cuando se haga comparación visual con el mediastino o el hígado. Por este motivo se ha recurrido al trazado de regiones de interés en la lesión residual y regiones de referencia para comparación del valor de SUV máximo. Las regiones de referencia deben evitar bordes y puntos espúreos con alta captación.1-3.

Existen múltiples estudios que analizan una estrategia terapéutica adaptada al riesgo, en función de resultados de la PET interim (PET-2), en estos estudios, globalmente entre un 15 – 20% de los pacientes muestran una PET-2 interim positiva y los análisis interinos, parecen confirmar la superioridad en SLP a corto plazo, en pacientes con PET interim positiva, que son escalados a esquemas más intensivos tipo BEACOPP-e o BEACOPP-14, frente a controles históricos, pero estos datos han de confirmarse en estudios prospectivos de largo seguimiento, a nivel de SG 12-15.

3.2. EVALUACION DE RESPUESTA METABÓLICA EN PET DE FIN DE TRATAMIENTO

En la evaluación de la respuesta, nos guiamos por las recomendaciones de Costwolds y de las Guías de práctica clínica de LH GELTAMO, NCCN y ESMO.

CRITERIOS DE VALORACIÓN DE LA RESPUESTA EN LHc

Se recomienda el uso de los criterios de valoración de la respuesta publicados por Cheson et al. (Tabla 1), para lo cual se realizará una PET/TAC de fin de tratamiento, en intervalo mínimo de 1 mes tras finalizar quimioterapia y 3 meses tras RT. En los pacientes con afectación de medula ósea al diagnóstico se ha de realizar también una BMO de fin de tratamiento 14.

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Criterios PET/TAC</th>
<th>Criterios TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resposta completa</td>
<td>1, 2, 3 DS, Sin lesiones nuevas, Sin afectación de MO</td>
<td>>1.5 cm en el diámetro mayor, Regresión de organomegalías, Sin lesiones nuevas, Sin afectación de MO</td>
</tr>
<tr>
<td>Resposta parcial</td>
<td>4, 5 DS, Reducción de la captación respecto al basal, Sin lesiones nuevas, Captación residual en MO menor que el basal</td>
<td>>50% de reducción respecto al basal de la suma del producto de diámetros perpendiculares en hasta 6 adenopatías, >50% de reducción de esplenomegalía, Sin lesiones nuevas</td>
</tr>
<tr>
<td>Enfermedad estable</td>
<td>4, 5 DS, Sin cambio respecto al basal, Sin lesiones nuevas, Captación en MO igual que el basal</td>
<td><50% de reducción respecto al basal de la suma del producto de diámetros perpendiculares en hasta 6 adenopatías, Sin lesiones nuevas</td>
</tr>
<tr>
<td>Progresión</td>
<td>4, 5 DS, Incremento de la captación respecto al basal, Lesiones nuevas o recurrencia de adenopatías o en MO demostrada por captación ávida de FDG</td>
<td>>50% de aumento del producto de diámetros perpendiculares en adenopatías, Aumento del diámetro de adenopatías (de 0.5 cm si es ≤ 2cm o 1 cm si es > 2cm, Esplenomegalía nueva o recurrente, Afectación linfática o MO nueva o recurrente</td>
</tr>
</tbody>
</table>
Tabla 2: **Criterios de Lugano adaptados a categorías PET(1,5)**

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Respuesta metabólica por PET/TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respuesta metabólica completa</td>
<td>Deauville 1, 2 y 3 nodales o extranodales, con o sin masa residual.</td>
</tr>
<tr>
<td>Respuesta metabólica parcial</td>
<td>Deauville 4 ó 5, con disminución de la captación comparado con el estudio basal y masa/s residual/es de cualquier tamaño. En el PETi pueden sugerir respuesta. Al final del tratamiento indican enfermedad residual metabólica.</td>
</tr>
<tr>
<td></td>
<td>Médula ósea: captación residual > que la médula normal pero < PET basal (se acepta captación difusa secundaria a la quimioterapia). Si hay persistencia de depósitos focales en médula con respuesta nodal considerar RM, biopsia o control evolutivo.</td>
</tr>
<tr>
<td>Ausencia de respuesta metabólica</td>
<td>Deauville 4 ó 5 sin cambios significativos respecto al basal. Tanto en PETi como al final del tratamiento.</td>
</tr>
<tr>
<td>Enfermedad metabólicamente progresiva</td>
<td>Deauville 4 ó 5 con aumento de captación respecto al basal y/o nuevos focos con avidez por FDG compatibles con linfoma. Tanto en PETi como al final del tratamiento.</td>
</tr>
</tbody>
</table>

3.3. **NUEVOS CRITERIOS LYRIC DE EVALUACIÓN DE RESPUESTA EN LA ERA DE LA INMUNOTERAPIA**

La detección en el tratamiento de distintos tipos de linfoma con inmunoterapia de aparición de efecto llamarada (flare effect), aparición de nuevas lesiones o aumento de las existentes con posterior respuesta demorada, ha llevado a la adaptación de los criterios de Lugano para incluir una valoración estandarizada que incluya la posibilidad de pseudoprogresión dentro de la evaluación de la respuesta.

Especialmente llamativo es el caso apreciable con inhibidores Checkpoint. La demostración de estos efectos en tumores sólidos ha llevado a que se propongan nuevos criterios de valoración de respuesta (IRC) 6. También han sido demostrados en linfomas y dado que estos criterios no son directamente aplicables a linfomas y no incluyen las modificaciones en PET-TAC, se han querido adaptar en su valoración introduciendo un nuevo término que se suma a los ya establecidos en la clasificación de Lugano, la respuesta indeterminada (IR) 7.

Esta respuesta indeterminada implica la detección por imagen de progresión de la enfermedad que debe ser comprobada en el caso de inmunoterapia para descartar pseudoprogresión.

Los criterios LYRIC (Lymphoma Response to Immunomodulatory therapy Criteria) son la primera aproximación. Tienen la perspectiva de recabar información a través de los ensayos clínicos que permita una evolución futura de los criterios de respuesta. Suponen que bajo estas circunstancias se permite la continuación con la inmunoterapia y revaluación a las 12 semanas.

En los casos de respuesta completa o parcial los criterios son los mismos que en la clasificación de Lugano.

En la respuesta indeterminada se reconocen tres tipos, con distinta interpretación y recomendaciones de actuación.

IR1: Aumento ≥50% de la suma del producto de los diámetros (SPD) hasta en 6 lesiones en las primeras 12 semanas sin deterioro clínico. Supone la identificación por imagen de un aumento de la carga tumoral. La disminución posterior es interpretada como respuesta retardada o la detección inicial de un efecto llamarada inmunomediado. Dentro de ensayo clínico se recomienda confirmar mediante biopsia y repetir el estudio de imagen a las 12 semanas. Se considera progresión si se aprecia incremento ≥10% en el seguimiento. Debe haber un aumento ≥5 mm (en cualquier dimensión) de ≥ 1 lesión para lesiones de ≤2 cm y 10 mm para lesiones >2 cm.
IR2: <50% aumento en SPD con nuevas lesiones o ≥50% aumento en la PPD de una lesión o grupo de lesiones en cualquier momento del tratamiento. No se asocia al tiempo transcurrido desde el inicio del tratamiento. Se recomienda la realización de biopsia tanto si está en ensayo clínico como si no. En el seguimiento si las lesiones nuevas o aumentadas presentan un aumento ≥50% desde su situación inicial se considerará enfermedad progresiva.

IR3: Aumento de la captación de FDG sin aumento concomitante del tamaño de la lesión que cumpla los criterios de progresión. Se considera progresión real si se asocia a un aumento de tamaño de las lesiones o a aparición de nuevas lesiones.

Si se cataloga como IR y posteriormente se confirma la progresión, la fecha a considerar como progresión es la de la IR, incluso aunque sea como enfermedad estable.

3.4. SEGUIMIENTO DE PACIENTES CON LHc TRAS RESPUESTA COMPLETA

Tras obtener respuesta metabólica completa al finalizar tratamiento de primera línea ABVD, se recomienda realizar las siguientes pruebas:

Anamnesis y Exploración Física cada 3 meses los primeros 2 años, después cada 4 meses durante tercer año, cada 6 meses hasta 5 años y anuales posteriormente.

Análisis en sangre: Hemograma y bioquímica completa cada 2-4 meses los primeros 2 años, después cada 4-6 meses hasta 5 años y anuales posteriormente

Determinación de la función tiroidea (TSH y T4L) anualmente si RT cervical

Pruebas de imagen en seguimiento de pacientes en primera remisión:

No se recomienda la realización de PET-TAC seriados en seguimiento de pacientes en primera remisión completa, por tanto, las pruebas de imagen deberán de ser guiadas por la clínica ante sospecha de recaída, ya que los estudios actuales muestran su escaso valor en pacientes con PET-i y PET de fin de tratamiento negativos.

No se recomiendan Rx de tórax seriadas, en el seguimiento de pacientes con afectación mediastínica basal, ya que el paciente podrá tener masas residuales a nivel mediastínico.

BIBLIOGRAFÍA

TRATAMIENTO DE RESCATE EN LHc RECAÍDA/REFRACTARIO Y TRASPLANTE AUTÓLOGO DE PROGENITORES HEMATOPOYÉTICOS

Autores: Eduardo Ríos Herranz, Francisca Hernández Mohedo, Carlos Solano Vercet

A pesar de que el LHc es una neoplasia con altas tasas de curación con esquemas estándar en primera línea (90% de pacientes en estadios precoces y 70% en avanzados), debemos considerar que un porcentaje significativo, sobre todo pacientes en estadios avanzados, recaen mayoritariamente dentro de primer año (25-30%) o son primariamente refractarios (5-10%). Entre ellos, son de especial consideración, por pronóstico muy adverso, pacientes primariamente refractarios, definidos como no respondedores, o que progresan en menos de 3 meses tras la finalización del mismo, o en recaída precoz, es decir, dentro de los primeros 12 meses de finalizar esquema terapéutico en primera línea 1,2.

Casi la mitad de los pacientes que recaen tras esquemas de primera línea pueden ser rescatados con TAPH, considerado actualmente el estándar terapéutico tras quimioterapia de rescate, siempre que se demuestre quimiosensibilidad y el paciente no presente contraindicación para su realización, debido a la presencia de comorbilidades importantes o edad muy avanzada 3.

La ventaja del TAPH respecto de la quimioterapia convencional, se pudo demostrar en 2 ensayos clínicos, estudio Británico BNLI y GHSG, comparativos entre quimioterapia a altas dosis seguida de TAPH vs mini BEAM o Deka-BEAM, sin rescate de TAPH, ambos favorables a esquema de TAPH, con claras ventajas en SLP (55% vs 34%, p=0.019), pero sin claras ventajas en SG 4,5.

Se han definido diferentes factores pronósticos predictivos de respuesta a TAPH 2,7,9-12, siendo las principales variables: enfermedad extranodal, voluminosa o estadios avanzados a la recaída, recaída precoz (<12 meses), ≥ 2 líneas de rescate previas, quimiorefractariedad o presencia de enfermedad residual en PET-TAC previo a TAPH. Si bien, uno de los factores con mayor impacto pronóstico, es la calidad de respuesta metabólica alcanzada en PET pre-TAPH y cada vez es mayor el nivel de evidencia de los beneficios en términos de SLP de conseguir una RC metabólica PET (−) con la terapia de rescate, lo que se traduce en la recomendación de llevar a paciente en situación de PET negatividad pre-TAPH 9,13-14.

No existe un esquema estándar de quimioterapia de rescate tras fallo a primera línea, ya que no disponemos de ensayos clínicos comparativos y el perfil de eficacia/toxicidad de cada uno procede de estudios fase II, series de casos y registros retrospectivos. El uso de fármacos de rescate en monoterapia ofrece globalmente inferiores resultados frente a esquemas de poliquimioterapia. La terapia de rescate pre-TAPH son los esquemas de com-
binación basados en platino: DHAP (dexametasona, cisplatino, citarabina en dosis alta) 15-16, ESHAP (etopósido, metilprednisolona, citarabina en dosis alta, cisplatino) 17,18, ICE (ifosfamida, carboplatino, etopósido) 16, en gemcitabina: GVD (gemcitabina, vinorelbina, doxorrubicina liposomal) 19, IGEM (ifosfamida, gemcitabina, vinorelbina) 20, o en combinación: GEMOX (gemcitabina, oxaliplatino) 21. Estos últimos probablemente menos tóxicos, globalmente obtienen tasas de RG 70-90% y RC entre 20-70% 9,15-22. Como alternativa, bendamustina, en combinación con gemcitabina y vinorelbina, no ejerce efecto deletéreo en la movilización de progenitores siempre que la recogida se programe precozmente tras 1-2 ciclos 23.

La recomendación actual es elegir el esquema de tratamiento del que se disponga de más experiencia en el centro y que afecte lo menos posible a la capacidad de movilización de progenitores hematopoyéticos, con regímenes como ESHAP o GEMOX x 3 ciclos y la recomendación de realizar la recolección de progenitores hematopoyéticos si es posible tras 2º ciclo.

Se desconoce asimismo la intensidad de tratamiento requerido antes de plantear el TAPH pero el ensayo HDR2 3 ha mostrado que la intensificación pretrasplante no mejora los resultados por lo que hay que evitar sobretratamientos en el rescate previo a TAPH 18.

En pacientes con LHc primariamente refractarios o en recaída, la terapia de rescate convencional en segunda línea, sólo ofrece respuestas en torno a 5-10% pacientes, por lo que pacientes no respondedores o en respuesta parcial a terapia de rescate en segunda línea, son candidatos a uso de nuevos agentes no quimioterápicos como brentuximab en tercera línea, o en caso de fallo a brentuximab, inmunoterapia con inhibidores del inmuno check point, como puente a trasplante, o a su inclusión en un ensayo clínico, si no se consideran candidatos a TAPH o alogénico. El TAPH doble o en tándem, ha sido debatido como una alternativa eficaz para los pacientes con LH de muy alto riesgo: refractarios primarios, en recaída precoz o con estadio avanzado, sin embargo, no es procedimiento extendido, ya que en la actualidad, los nuevos fármacos están desplazando estas estrategias, además, los datos aportados por el PET post primer TAPH permiten evitar en una proporción de pacientes, el segundo TPH 24-26.

Los avances realizados en la terapia de soporte en TAPH han sido determinantes en el descenso de la tasa de mortalidad relacionada con el procedimiento, que actualmente debe ser inferior al 4%. Todo ello ha contribuido a que el TAPH sea recomendado como la terapia de rescate de elección en los pacientes con LHc que fracasan al tratamiento de primera línea y que muestran quimiosensibilidad 15-18.

No existen estudios prospectivos aleatorizados que comparen los diferentes acondicionamientos previo al TAPH. La irradiación corporal total se desaconseja por su mayor toxicidad e incidencia de neoplasias secundarias 9-10,23. El esquema de acondicionamiento BEAM es el más utilizado. Alternativas a BEAM son CBV o los esquemas basados en busulfán, ciclofosfamida y etoposido, todos ellos con SLP en torno al 50% 10,24-26.

El TAPH es la opción más beneficiosa para los pacientes en recaída o primariamente refractarios que alcanzan una respuesta de calidad tras terapia de rescate en 2º línea.

Se recomienda obtener una respuesta completa metabólica pre-TAPH.

Pacientes primariamente refractarios o en recaída, no respondedores o en respuesta parcial a terapia de rescate en segunda línea, son candidatos a uso de nuevos agentes pre-TAPH, como brentuximab vedotina en tercera línea, como puente a trasplante, o a su inclusión en un ensayo clínico, si no se consideran candidatos a TAPH o alogénico 6-10.

BIBLIOGRAFÍA

TRASPLANTE ALOGÉNICO EN LHc EN RECAÍDA/ FRENFRACTARIO

Autores: Carlos Solano Vercet, Alejandro Contento Gonzalo, Elisa López Fernández, Manuel Jurado Chacón

INTRODUCCIÓN

A pesar de la alta tasa de curación que presenta el LHc con los tratamientos convencionales de quimioterapia y/o RT, un 15%-30% de los pacientes con LHc recaen o son primariamente refractarios a la quimioterapia. En esta situación, tal como se ha resumido en el capítulo anterior, la quimioterapia en dosis altas seguida de trasplante autólogo de progenitores hematopoyéticos (TAPH) es el tratamiento de elección cuando se consigue criterios de quimiosensibilidad con el tratamiento de rescate. Sin embargo, los pacientes que recaen después de un TAPH o no consiguen quimiosensibilidad con el tratamiento de rescate, tienen un pronóstico muy adverso 1.

En este escenario, el trasplante alogénico de progenitores hematopoyéticos (AloTPH) pasa a ser la mejor opción terapéutica curativa a largo plazo. El interés del AloTPH en el LHc deriva no únicamente de la cito-reducción causada por la QT, sino también del potencial beneficio del efecto injerto contra-linfoma 2.

El AloTPH se ha utilizado en este entorno desde principios de la década de 1980 con diversos grados de éxito, determinados por el riesgo de recaída y la mortalidad relacionadas con el procedimiento (MRT), debida fundamentalmente a la enfermedad injerto contra receptor (EICR) y las infecciones postrasplante, que han sido los dos obstáculos para obtener mejores resultados en estos pacientes sometidos a AloTPH 3. Con el uso de los regímenes de acondicionamiento de intensidad reducida (AloTIR), las tasas de MRT han disminuido y el GvL ya es reconocido como el mecanismo principal para las remisiones a largo plazo en estos pacientes 4.

Las guías recientemente publicadas por la American Society of Blood and Marrow Transplantation y EBMT, consideran el AloTPH como la opción de tratamiento estándar en pacientes con recaída quimiosensible después de TAPH 5-6.

5.1. FACTORES PRONÓSTICOS

Existen algunos factores pronósticos pre-TAPH que han sido validados por varios grupos que predicen la supervivencia tras la recaída post-TAPH. El análisis retrospectivo del EBMTs, identificó la recaída precoz post-TAPH (< 6 meses), estadio Ann Arbor IV, masa tumoral bulky (>5 cm), edad => 50 años y mal estado general (Karnofsky < 80%) como factores pronósticos independientes 7. Los pacientes sin ninguno de estos factores, con 1 o con 2 o más, tuvieron una SG del 62%, 37% y 12%, respectivamente. Resultados similares se observaron por Satwani et al. 8 y por Hahn et al. 9.

5.2. MODALIDADES DE AloTPH

Actualmente, se han incorporado regímenes de acondicionamiento no mieloablativo como estándar terapéutico en LHc, por la inferior toxicidad de estos regímenes de acondicionamientos de intensidad reducida (AloTIR), con inferior morbi-mortalidad relacionada con el procedimiento (MRT), mientras mantienen el efecto GvL 4-6.

Con la utilización de esquemas AloTIR, distintos estudios han demostrado que se ha disminuido significativamente las tasas de MRT, manteniendo el efecto de GvL, lo que ha permitido el uso de este tipo de procedimientos en
pacientes con comorbilidad o con edad avanzada y se han mejorado resultados de supervivencia global (SG) y la supervivencia libre de progresión (SLP) con respecto a AloTPH con acondicionamiento mieloablativo.10-12

Por otro lado, si consideramos que menos de un 30% de pacientes, tendrán un donante familiar HLA compatible (DE), cada vez más se están explorando fuentes alternativas de donante, entre las que se encuentran los donantes no emparentados (DnE) HLA idénticos y donantes familiares haploidénticos. Estos últimos ofrecen la ventaja de la rápida disponibilidad de donante, frente a los procedentes de registros internacionales, que pueden suponer una demora en torno a 3 meses para realizar el procedimiento. En distintas series analizadas, los resultados en estas distintas modalidades de AloTIR son superponibles, con SLP y SG a 2 años similares, sobre todo con los regímenes actuales de acondicionamiento y el uso de ciclofosfamida post-trasplante, que reduce la incidencia de EICR en el AloTIR haploidéntico.13

Por tanto, en función de la disponibilidad, se podría utilizar tanto un donante emparentado idéntico (DE), donante no emparentado (DnE) 10/10 o un donante haploidéntico, ya que no se han observado diferencias significativas entre las distintas modalidades en SG y SLP que oscilan entre 58% y 29% a 2 años, respectivamente, con riesgo de recaída ligeramente inferior en la modalidad haploidéntico y sin diferencias en incidencia de EICR aguda y crónica 13-18.

En cualquier caso, se debe recordar que en caso de haber utilizado inhibidores de puntos de control inmune pre-trasplante, se deben suspender al menos 6 semanas antes del Alo-TPH ya que en caso contrario aumenta de forma significativa la incidencia y gravedad de EICR32, tal como se detalla en el capítulo 6.32

5.3. INDICACIONES DE AloTPH

En aquellos pacientes que se encuentran en recaída quimiosensible y que ya han recibido TAPH previamente, está indicada la realización de un TPH alogénico

La recomendación de realizar TPH alogénico en pacientes refractarios a tratamiento de rescate es una opción experimental a valorar; si es posible dentro de un ensayo clínico, realizando doble TAPH o utilizando el TAPH como forma de alcanzar una respuesta previo a TPH alogénico en tandem 5,6,13,14,31. A continuación se detallan las recomendaciones de TPH alogénico en función de las características clínicas del paciente y donante, del EBMT y de la ASBMT 5,6.

<table>
<thead>
<tr>
<th>European Society for Blood and Marrow Transplantation (EBMT) 2015</th>
<th>Hermano HLA idéntico</th>
<th>DnE 10/10</th>
<th>Donante alternativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado enfermedad</td>
<td>Iª Remisión Completa</td>
<td>No recomendado (III)</td>
<td>No recomendado (III)</td>
</tr>
<tr>
<td>Recaída quimio sensible, sin TAPH</td>
<td>Experimental (III)</td>
<td>Experimental (III)</td>
<td>No recomendado (III)</td>
</tr>
<tr>
<td>Recaída quimio sensible, con TAPH</td>
<td>Evidencia (III)</td>
<td>Evidencia (III)</td>
<td>Opción clínica (III)</td>
</tr>
<tr>
<td>Refractario</td>
<td>Experimental (II)</td>
<td>Experimental (II)</td>
<td>Experimental (III)</td>
</tr>
</tbody>
</table>
Linfoma de Hodgkin Clásico: Actualización en abordaje diagnóstico y terapéutico de paciente adulto

American Society for Blood and Marrow Transplantation

<table>
<thead>
<tr>
<th>AloTPh</th>
<th>Grado recomendación</th>
<th>Nivel evidencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se pueden considerar cualquier tipo de precursor hematopoyético</td>
<td>A</td>
<td>1+</td>
</tr>
<tr>
<td>En recaída tras TAPH, se recomienda frente a otras terapias</td>
<td>B</td>
<td>2++</td>
</tr>
<tr>
<td>AloTIR es el acondicionamiento recomendado</td>
<td>B</td>
<td>2+</td>
</tr>
<tr>
<td>AloTPh es preferible a 2º TAPH, excepto en recaídas tardías</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>No hay evidencia de la eficacia del trasplante en tandem TAPH/AloTPh</td>
<td>D</td>
<td>4</td>
</tr>
</tbody>
</table>

5.3. TRATAMIENTO DE RECAÍDAS POST AloTPh

A pesar de los resultados alentadores del AloTPh en pacientes que recaen post TAPH, la tasa de recaída suele ser en torno a un 30-45%. Ante una recaída post AloTPh no hay un tratamiento de rescate estandarizado; no obstante, se han planteado diversos esquemas de tratamiento, entre los que se incluye la combinación de agentes quimioterapéicos no utilizados previamente, asociados o no a brentuximab vedotina o a ILD. El uso de brentuximab en combinación con ILD es un tratamiento seguro con altas tasas de RC y un buen perfil de seguridad. También la utilización de nivolumab ofrece unas aceptables tasas de respuestas, si bien, debemos de considerar que su uso sólo es recomendado en pacientes sin antecedentes de EICRa.

Entre todos los posibles tratamientos, el papel de la RT continúa siendo importante para controlar la enfermedad y poder conseguir remisiones completas más duraderas.

El aloTPh con acondicionamiento de intensidad reducida es la única opción curativa para pacientes jóvenes en recaída post-TAPH.

La indicación de aloTPh frente al uso de nuevos agentes, como BV o inhibidores de punto de control inmune, deberá ser individualizada en cada paciente, en función de las características del paciente y de la enfermedad.

En pacientes primariamente refractarios o en recaída refractaria, el trasplante en tándem (doble TAPH o TAPH seguido de aloTPh), será una opción a valorar, preferiblemente dentro de ensayo clínico.

BIBLIOGRAFÍA

6.1. INTRODUCCIÓN

A pesar de que aproximadamente un 50% de pacientes con LHC en recaída/refractarios son rescatados con esquemas en quimioterapéuticos en segunda línea, seguidos de TAPH, de ellos, nuevamente, en torno a un 50%, presentarán recaídas tras TAPH y un elevado porcentaje de casos serán quimio refractarios. En este escenario, nuevos agentes como brentuximab vedotina o inhibidores del check point, han abierto nuevas líneas de abordaje terapéutico 1-5.

La histología característica en LHC, en la que un escaso número de CRS (2% de la celularidad), están rodeadas de un importante infiltrado celular de tipo inflamatorio/inmune, sugieren una respuesta inmune defectiva a nivel del microambiente tumoral, que permite el escape de estas células a los mecanismos de inmunovigilancia antitumoral 1.

BV es un agente no quimioterápico anti-CD30, en el que un anticuerpo quimérico anti-CD30 conjugado a un agente antimitótico inhibidor de microtúbulos, monometil-auristatina E (MMAE), unidos mediante enlace covalente y estable en plasma, se unirá a la proteína transmembrana CD30 en superficie de célula tumoral (CRS) y liberará el agente antimitótico que es internalizado mediante endocitosis en la célula, la posterior degradación del conjugado a nivel de lisosomas de célula tumoral, liberará el fármaco activo MMAE, que se une a la tubulina e inhibe la formación de los microtúbulos, con interrupción de ciclo celular G2/M y apoptosis celular 6-11.

Paralelamente, se ha demostrado la base genética que determina la inmunoevasión de CRS, consistente en la amplificación genética y ganancia de copias de 9p24.1, demostrada mediante técnicas de hibridación in situ sobre muestras histológicas de LHC en prácticamente todos los pacientes, lo que produce la sobreexpresión de ligandos PD-L1 y PD-L2 (programed dead protein ligand) a nivel de células tumorales (CRS) 1.

PD-L1 también se sobreexpresa por los macrófagos infiltrantes del tumor y PD-1 en células del microambiente tumoral (macrófagos, células T-reg, células NK, linfocitos B y linfocitos T activados infiltrantes del tumor (TILs). La activación de la vía de PD-1/PD-L1, producirá una acción inhibitoria sobre la respuesta inmunológica, creando un microambiente tumoral protector para la CRS, que a su vez es modulado por receptores coinhibitorios como CTLA4, favoreciendo el escape antitumoral de CRS en LHC, con bloqueo sobre la activación del linfocitos T citotóxicos y generando linfocitos T exhaustos y estado de anergia antitumoral 2.

Por otro lado, la activación constitutiva de las vías de señalización NFkB y JAK/STAT, mediante amplificación genética y ganancia de copias, es característica en CRS, y esto favorece la proliferación y supervivencia de células tumorales. Además en LHC asociado a virus Epstein-Barr (LHC-EBER positivo), se ha demostrado la sobreexpresión de PD-L1, a través de vía de activación JAK/STAT, lo que indicaría un mecanismo patogénico relacionado con expresión del genoma de VEB por las CRS 3-5. Los fármacos inhibidores de check-point (ICP), bloquearán esta vía PD-1/PD-L1, restaurando la inmunidad antitumoral en LHC. Pero es muy importante conocer los mecanismos moleculares por los cuales algunos pacientes con LHC en R/R no responden a los ICP y en este sentido, si bien la de sobreexpresión de PD-L1, está presente en más del 90% de pacientes, el grado de sobreexpresión puede ser variable y así también la respuesta a estos agentes y posibles mecanismos de resistencia a ICP en LHC 1-5.
6.2. BRENTUXIMAB VEDOTINA EN LHc EN RECAÍDA /REFRACTARIO TRAS TAPH

Tras décadas de tratamiento estándar ABVD, recientemente han surgido nuevos agentes como brentuximab vedotina (BV), que han mostrado resultados muy prometedores en monoterapia en pacientes en recaída/refractariedad tras TAPH 6-11.

Los resultados del estudio pivotal en Fase II SGN35-003 (NCT00848926), dieron lugar a la aprobación actual de BV en monoterapia en pacientes en recaída tras TAPH, debido a que mostraron resultados muy favorables, con tasas de respuestas globales (RG) del 75% y respuestas completas (RC) del 34% (Criterios de respuesta, Cheson 2007). Globalmente, la mediana de ciclos recibidos fue de 9 (rango, 1-16) 6-7. La SLP con BV fue de 7.8 meses vs 4.1 meses con QT de rescate tras recaída post-ASCT y en pacientes que alcanzan RC, de 21.7 meses (Alo-TPH y No Alo-TPH) 6-7. Los datos actualizados de seguimiento a 5 años del estudio SGN35-003, confirman los resultados previos, con SG del 41% y SLP 22%, respectivamente y en pacientes que alcanzan RC SG del 64% y SLP del 52% (mediana 20,5 meses) y 9% de los pacientes permanecen en RC sin aloTPH adicional a 5 años 8.

En pacientes considerados candidatos a procedimiento de aloTPH, puesto que la mayoría alcanzan respuestas precozmente, el objetivo será dar un número corto de ciclos, que nos permita obtener una respuesta de calidad pre-aloTPH, considerando que el uso de BV pre-aloTPH no compromete los resultados de este 6-8.

Los resultados de este fármaco en monoterapia, han impulsado varios ensayos fase 2, con BV sólo o en combinación con quimioterapia, como terapia de rescate en segunda línea, tales como estudio BRESHAP del grupo español GELTAMO, o BV con Bendamustina, siendo los resultados de ambos estudios muy similares, ya que ambos se observa sinergia, aumentando tasas de respuestas (RG y RC), así con BV mas Bendamustina se obtienen tasas de RG y RC del 93% y 74%, con SLP a 1 año del 80%, y con esquema BRESHAP tasas de RG y RC del 96% y 70%. Esto datos si bien son preliminares, plantean el posible uso de estos esquemas como estrategia de rescate pre-TAPH o Pre-AloTPH 9-11.

En conclusión, BV en monoterapia es una estrategia terapéutica recomendada en la actualidad en pacientes refractarios a ≥ 2 líneas de quimioterapia previas y en recaída/refractariedad post-TAPH.

Recomendamos administrar 2 ciclos iniciales de BV en monoterapia, seguida de reevaluación PET y si respuesta al menos parcial (RP), administrar 2 ciclos adicionales, con posterior consolidación con AloTPH, en pacientes considerados candidatos a este procedimiento y que hayan alcanzado respuestas de calidad (≥ RP).

6.3. BRENTUXIMAB EN CONSOLIDACIÓN POST-TAPH EN PACIENTES DE ALTO RIESGO DE RECIDIVA

Los pacientes con LHc primariamente refractarios o en recaída precoz post-TAPH muestran pobres resultados con estrategias convencionales de rescate, además el 75% de recaídas post-TAPH se producen en primer año post-TAPH, siendo la SG de los pacientes en recaída post-TAPH inferior a 2,4 años y en pacientes que recaen precozmente inferior a 1,2 años 12-14. Múltiples estudios, consideran factores pronósticos predictivos de inferior SLE post-TAPH: enfermedad primariamente refractaria, recaída precoz (<12 meses), enfermedad extranodal, estado avanzado o presencia de síntomas B a la recaída, haber requerido más de 1 de línea quimioterapéica de rescate previa y no alcanzar RCm pre-TAPH 12-16. De ellos, uno de los factores predictivos de mayor impacto en la SLP post-TAPH, es la calidad de respuesta alcanzada en PET pre-TAPH y cada vez es mayor el nivel de evidencia de los beneficios en términos de SLP de conseguir una RCm en PET tras terapia de rescate 12-16.

La estrategia planteada en estudio fase 3 AETHERA, para pacientes de alto riesgo de recidiva post-TAPH, es la consolidación con BV en monoterapia postrasplante (1,8 mg/Kg cada 3 semanas por 16 ciclos). Los datos actuales de seguimiento a 5 años de este estudio, confirman ventajas en SLE para pacientes de alto riesgo sometidos a consolidación con BV tras TAPH vs placebo, con SLP a 5 años para pacientes en rama de BV de 59 % vs 41% en rama placebo, y HR 0,521 (p=0,001) y una ventaja relativa en SLP tras consolidación con BV en torno al 30%
a 5 años. Sin embargo existen varias limitaciones en este estudio, en primer lugar los pacientes incluidos no habían sido expuestos a BV-PreTAPH, no demostraron ventajas en SG, debido en parte a que se admitía entre-cruzamiento entre ambas ramas y aún queda por determinar su eficacia en pacientes en RCM Pre-TAPH, ya que el diseño de este estudio no incluía su evaluación PET pre-TAPH, mientras que sí parecen consolidarse ventajas en SLP en seguimiento a 5 años, en especial en subgrupo de pacientes de alto riesgo con mayor o igual de 2 factores de riesgo a la recaída (score de riesgo ≥ 2), en los que esta estrategia de consolidación, aportará claras ventajas en SLP (HR 0,424) y mayor beneficio clínico, frente a su uso como terapia de rescate a la recaída post-TAPH 13-16.

En conclusión, recomendamos consolidación con BV post-TAPH solo para pacientes de alto riesgo sometidos a TAPH en situación de RP en PET pre-TAPH, o con 2 ó más factores pronósticos adversos según ensayo AETHERA. En aquellos pacientes expuestos a BV pre-TAPH, sólo se recomienda consolidación, si con BV se obtuvo una respuesta de calidad pre-TAPH, ya que esta estrategia aumentaría la SLP de estos pacientes 13-16.

6.4. INHIBIDORES DEL CHECK-POINT INMUNE EN L. HODKING EN RECAÍDA /REFRACTARIO

Dentro del grupo de fármacos inhibidores del check point inmune (ICP), nivolumab y pembrolizumab, muestran resultados muy similares en cuanto a tasas de respuestas globales (RG 66% y 72%, respectivamente), en un perfil de pacientes de características muy similares(CheckMate 205 y Keynote-087) 21-27.

Los ICP, como estrategia de rescate, deben ser contemplados en la actualidad tras fallo a TAPH y BV, con la finalidad de rescate pre-Alo-TPH 17-21. Si bien, estudios preliminares en fase 1/2, muestran resultados prometedores de inhibidores de Check-point (ICP) en combinación con BV o quimioterapia de rescate, en pacientes con LHc en recaída/refractariedad, estos estudios son objeto de ensayos en fase 3, actualmente en curso 17-21.

6.4.1. NIVOLUMAB EN MONOTERAPIA EN LHc EN RECAÍDA /REFRACTARIO TRAS FALLO A TAPH Y BRENTUXIMAB:

Los resultados de los estudios CheckMate 039 (Fase 1) y del estudio pivotal CheckMate 205 (fase 2), que dieron lugar a la actual aprobación de Nivolumab en monoterapia (3 mg/kg cada 2 semanas hasta progresión o toxicidad inaceptable), proceden del análisis de la cohorte B del estudio pivotal CheckMate 205 (pacientes en recaída/refractariedad tras fallo a TAPH y BV), en los que se confirman tasas elevadas de RG, en pacientes en recaída/progresión post-TAPH y BV (87% RG , RC 17%) 18-19. A pesar de que la mayoría de respuestas obtenidas con Nivolumab en monoterapia son parciales, las respuestas alcanzadas son duraderas, con independencia de la profundidad de estas, con SLP a 24 semanas del 86%, siendo la duración media de respuesta no alcanzada en pacientes en RC, además el tiempo medio de alcanzar una respuesta objetiva es reducido (2,1 meses) y la mayoría de los pacientes obtienen un beneficio clínico con estabilización de su enfermedad. Globalmente la SG estimada a 12 meses es del 95% y SLP media de 10 meses 18-21.

El perfil de seguridad observado en estudios CheckMate 039 (Fase 1) y 205 (fase 2) es muy favorable, con toxicidad limitada (Grado 1-2), en pacientes muy pre-tratados y a pesar de las frecuentes reacciones infusionales, estas son evitables con pre-medicación y no suponen la discontinuación de terapia debida a toxicidad. Los efectos adversos más frecuentes comunicados son elevación en lipasa sérica (5%), neutropenia (3%), y elevación de ALT (3%) 17-22.

Los datos de seguimiento a 18 meses de estudio CheckMate 205, confirman los resultados previos, con tasas de RG elevadas (RG 69% y RC 16%), duración media de respuesta de 16,6 meses (20,3 meses en RC), SLP 14,7 meses (22,2 meses en RC) y SG del 92% a 1 año 19-21. Estos resultados son de gran impacto, si consideramos que se trata de pacienes con múltiples líneas previas, quimiorrefractarios, y previamente tratados con BV, que permite llevar a los pacientes a Alo-TPH con respuestas de calidad 21-22. Sin embargo, estos resultados tan favorables de Nivolumab en monoterapia, no deben ser interpretados como la recomendación de consolidar con Nivolumab, respuestas objetivas obtenidas con BV, demorando el procedimiento de Alo-TPH, debido a que, si bien, es conocido el impacto pronóstico de la obtención de una RCm en PET pre-TAPH, es controvertido su papel en Alo-TPH para aquellos pacientes que muestran quimiosensibilidad, mientras que el número de líneas previas tiene un impacto
negativo en la MRT y Nivolumab pre-AloTPH, parece aumentar la incidencia y severidad de EICH y SOS, como veremos en apartado siguiente 23-24.

Los resultados de ICP como Nivolumab en monoterapia en LHc, están impulsando estudios en combinación, como el ensayo fase 2, recientemente publicado por Herrera y col., en combinación con BV como estrategia de rescate en segunda línea pre-TAPH, con tasas de RC del 62% y un estudio fase 3 actualmente en curso, que compara terapia combinada Nivolumab + BV vs BV en monoterapia. Debido a que la mayoría de pacientes en recaída post-TAPH, previamente han sido expuestos a BV, la estrategia de rescate pre-Alo-TPH sería Nivolumab 23-26.

La recomendación actual de Nivolumab en monoterapia está dirigida a pacientes en recaída/refractarios post-TAPH y falla a BV y permite una terapia puente al Alo-TPH.

6.5. SEGURIDAD Y EFICACIA DE ALOTPH POST- NIVOLUMAB LHc R/R

El subanálisis de pacientes procedentes de estudio pivotal checkmate 205, en 44 pacientes sometidos a Alo-TPH tras una media de 13 ciclos de Nivolumab (Armand P , et al. JCO 2018), muestran SG a 1 año del 90%, SLP del 74% y mortalidad relacionada con procedimiento de trasplante a los 100 días (MRT) del 10%, similar a lo publicado en literatura de otros grupos trasplantadores 21.

Merriman, et al, analizan la seguridad y eficacia de AloTPH tras anti-PD-1, en una cohorte de 39 pacientes (31 LH/8 LNH) sometidos a AloTPH de intensidad reducida post- anti-PD-1 (Nivolumab/Pembrolizumab), con un intervalo medio de 62 días entre última dosis de Nivolumab y AloTPH y tras una mediana de seguimiento de 12 meses, la incidencia acumulada de EICH-a G2-4, G3-4 y G4 fue de 44%, 23% y 13%, con una mediana de 27 días post-TPH al inicio de EICH-a y 8% desarrollaron SOS hepático severo que requirió uso de defibrotide, mientras que la incidencia de EICH-c fue del 41%, siendo superior la incidencia acumulada complicaciones y toxicidad precoz frente a los controles históricos, considerando que se trataba de AloTPH de intensidad reducida, sin diferencias en función de tipo de alopófia (DE o DNE) . Mientras que la SG y SLP a 1 año en subgrupo de LHc fue de 89% y 76% respectivamente, con tasas de mortalidad acumulada a 1 año relacionada con Recaída y no relacionada con recaída (MNR) del 16% y 10% respectivamente, similares a la de cohortes históricas, la ausencia de impacto negativo en el injerto o quimerismo y la elevada SLP a 1 año, implican una elevada eficacia en el control de la enfermedad y concluyen que el aloTPH tras anti-PD-1 es factible y no supone una contraindicación de este procedimiento, pero se relaciona con mayor frecuencia de toxicidad precoz inmunorelacionada, posiblemente debida a un aumento de aloreactividad tras inhibidores de Check-point inmune, mediada por la depleción de Linfocitos T PD-1+ y T-reg, que se mantiene a lo largo de seguimiento de 6 meses, por lo que no pueden recomendar un intervalo entre el uso de anti-PD-1 y AloTPH 24-25.

Otras reacciones adversas inmunorelacionadas, como síndrome febril hiperagudo (SFH) de desarrollo temprano (1-7 días post-TPH), con fiebre, disfunción hepática y rash, sin cumplir criterios de síndrome de implante se observó en 18% pacientes que fue manejado con corticoides y en algunos casos, precedió al desarrollo de EICH hiperaguda 21,25.

Recientemente, Herbaux y col, han definido unas recomendaciones de manejo de inhibidores del inmune check point en el contexto del aloTPH, que incluyen el uso de médula ósea como fuente de progenitores, profilaxis de síndrome de obstrucción sinusoidal (SOS), acondicionamiento con ciclofosfamida post-TPH, para reducir los fenómenos aloreactivos, al igual que en protocolo de TPH haploidéntico, monitorización estrecha de EICR y se define un intervalo recomendado entre última administración de fármaco y procedimiento de aloTPH de 6 semanas 26.

6.5. PEMBROLIZUMAB EN LHc EN R/R

Los datos de pembrolizumab en monoterapia son superponibles a los comentados para nivolumab en pacientes en recaída/refractariedad tras BV y TAPH o no elegibles para TAPH (Keynote -087 y 013). Si bien hemos de tener dos consideraciones respecto a este fármaco, que son el intervalo de administración de 3 semanas y la aprobación
de este en pacientes, también para no elegibles para trasplante. De modo que en pacientes que no cumplan el criterio de exposición previa a TAPH, sería el único inhibidor del check point, aprobado actualmente 27.

La monoterapia con IPC permite rescatar a un subgrupo de pacientes quimiorefractarios, tras fallo a TAPH y BV. Como terapia puente al Alo-TPH, las recomendaciones actuales incluyen el uso de médula ósea como fuente de progenitores, profilaxis de síndrome de obstrucción sinusoidal (SOS) y acondicionamiento con ciclofosfamida post-TPH y debemos individualizar la recomendación de su uso, en relación a mayor riesgo reacciones adversas inmunomediadas.

6.6. NUEVOS AGENTES EN RECAÍDA POST-AlOTPH

6.6.1. EXPERIENCIA DE NIVOLUMAB EN LHC EN R/R POST-AlOTPH

Dos recientes estudios retrospectivos, analizan el papel de Nivolumab en pacientes con LHC en recaída/refractariedad post-AlOTPH, en el primero del grupo francés, Herbaux, et al., incluyen a 20 pacientes. En este subgrupo de pacientes tratados con Nivolumab, obtienen resultados muy favorables con RG 95% (42% RC y 52% RP) y SG y SLP estimada a 12 meses superior al 78,7% y 58,2% respectivamente 28.

Del mismo modo, Haverkos A. et al., analizan el uso de Nivolumab post-alotPH en 31 pacientes con LHc y obtiene un 77% de RG (50% RC), con SLP y SG a 12 meses del 74% y 80% respectivamente y tasa de EICRc y EICRa del 32% y 23% respectivamente, siendo refractarios a esteroides 9 de 10 pacientes tratados. La incidencia de EICR post Nivolumab fue superior en aquellos pacientes que ya lo habían desarrollado previamente 29.

En los estudios disponibles, el perfil de seguridad es aceptable, si bien un 30% desarrolla EICRa, de inicio precoz (1 semana tras primera infusión), todos ellos con historia previa de EICRc post-alotPH, siendo esta de difícil manejo, y ante este aumento de riesgo de EICR hiperaguda, recomiendan valorar riesgo-beneficio de reagudización en pacientes con EICR previa. Otros aspectos a destacar, son que no induce reagudización de EICRc ni modifica el quimerismo post-AlotPH 28-31.

En pacientes sin historia previa de EICRc, Nivolumab obtiene unos resultados favorables frente a otras terapias de rescate, como BV o ILD, en pacientes con LHc en recaída/refractariedad post-AlotPH, si bien, se debe valorar detenidamente el riesgo de su uso en pacientes con antecedentes de EICRc y en recaída precoz en primer año post-AlotPH 28-29.

6.6.2. EXPERIENCIA DE BRENTUXIMAB VEDOTIN EN LHC EN R/R POST-AlOTPH

En relación con la utilización del fármaco BV en recaída post AloTPH, Carlo-Stella C. et al. analizan la seguridad y eficacia del BV, con una media de 8 ciclos de BV; un 50% obtienen respuestas objetivas y 38% RC, con SLP a 1 año del 30%, SG media de 25 meses, destacando la buena respuesta al tratamiento y siendo necesario la asociación a terapias celulares para mantener las respuestas alcanzadas 31. En este sentido, otros autores publican su experiencia en la combinación de ILD +BV en pacientes recaídos tras aloTPH, obteniendo RC duraderas, desarrollando EICRc un 83% y EICRa un 66%, en todos los casos controlada con las terapias estándar 32-34.

6.6.3. EXPERIENCIA CON NUEVOS AGENTES EN LHC EN R/R NO CANDIDATO A TAPH

En pacientes con LHc en recaída o primariamente refractario, de edad avanzada y/o no candidatos a intensificación quimioterápica y TAPH por comorbilidad, la opción de nuevos agentes como BV o inhibidores del check point, puede ofrecer respuestas duraderas y estabilidad clínica 35-36.
BIBLIOGRAFÍA

ABORDAJE TERAPÉUTICO DE LHc EN SITUACIONES ESPECIALES: EMBARAZO, EDAD AVANZADA Y VIH POSITIVOS

Autores: Antonio Jesús Cruz Díaz, Jon Badiola, Francisca Hernández Mohedo

El LHc que se presenta en pacientes durante la gestación, en edad avanzada o infección por el VIH, supone un importante reto y debemos de tener en cuenta una serie de aspectos diagnostico-terapéuticos específicos para estas situaciones.

7.1. LHc EN PACIENTES EMBARAZADAS

El LHc es uno de los linfomas más frecuentes durante el embarazo, principalmente porque su incidencia máxima coincide con la edad reproductiva. Se presenta en aproximadamente en 1: 1000 a 6000 embarazos y supone el 3% o menos de todos los pacientes con LHc. Por este motivo, existen pocas series de pacientes que permitan evaluar de forma sistemática los múltiples problemas que existen su manejo.

El subtipo histológico más frecuente es la esclerosis nodular y en general, el comportamiento clínico y el pronóstico es similar al de la mujer no embarazada. Aproximadamente el 70% de los casos son estadios IA-IIA, asintomáticos o mínimamente sintomáticos. Los cambios asociados al embarazo (fatiga, disnea, anemia, trombocitopenia, aumento de VSG…) pueden superponerse a los signos y síntomas del LH, produciendo retrasos diagnósticos y cambios en el estadiaje.

Estadiaje en el embarazo:

– **Estudio analítico:** debe de incluir los mismos parámetros descritos en capítulo 1: Hemograma y VSG, Bioquímica general con perfil renal, hepático, LDH, albúmina, TSH y PCR, Coagulación básica, Análisis de orina (sedimento y anormales) y Serologías de EBV, HBV, VHC, VIH, CMV IgG, sífilis.

– **Estudio de extensión:**
 - Evaluación torácica: Mediante radiografía simple de tórax anteroposterior con adecuado blindaje abdominal y RMN si se observaran anomalías en la radiografía.
 - Evaluación abdominal: Mediante estudio ecográfico y RM abdominal.
 - Biopsia de cresta ilíaca: Se indicará en estadios avanzados (IIIB – IV), cuando existen síntomas B o citopenias (leucocitos < 4.0 x 10^9/L, Hb < 120 g/L o plaquetas < 125 x 10^9/L). Si fuera preciso anestesia general para la biopsia ganglionar, se recomienda realizarla en el mismo procedimiento quirúrgico.

La RM se ha propuesto como una alternativa a la PET-TAC y la TAC estándar con el fin de evitar la radiación ionizante y se prefiere a la ecografía, ya que permite evaluar los ganglios, el hígado y el bazo con mayor sensibilidad. Aunque la dosis de radiación administrada y los riesgos a los que se somete al feto durante la TAC convencional varían en función a la ventana examinada y la edad gestacional, existen serias dudas sobre el uso de esta modalidad durante el embarazo y no debería realizarse si se dispone de RM o ecografía. La PET-TAC está contraindicada. La RM se considera una técnica segura para el feto y para la madre, pero se recomienda precaución en su uso durante el primer trimestre de embarazo. La principal preocupación para su uso en el embarazo es el contraste...
con gadolino, ya que si bien no se han comunicado efectos teratógenos cuando se usó inadvertidamente en el embarazo, se recomienda usarlo solo si los beneficios potenciales superan los riesgos 3-4.

Aspectos terapéuticos en el embarazo:2,10,33

Efectos de la terapia en el desarrollo fetal

Durante el primer trimestre, el feto es muy sensible a los efectos tóxicos del tratamiento, sobre todo durante el periodo de la organogénesis (semanas 2 a 8 de gestación), existiendo riesgo de abortos espontáneos y anomalías morfológicas variables. Durante el segundo y tercer trimestre la toxicidad es más sutil, relacionándose con bajo peso, restricción del crecimiento e incluso feto muerto. A largo plazo se ha comunicado alteración de la función reproductiva, discapacidad intelectual, mutaciones del tejido germinal y carcinogénesis. La radioterapia se ha asociado con riesgo de leucemia y tumores sólidos durante la primera década de vida, cuyo riesgo es mayor durante el primer trimestre3-8,12.

Primer trimestre:

El uso de ABVD en el primer trimestre no es recomendado, a pesar de que algunos autores argumentan que probablemente sea seguro, al encontrar resultados relativamente buenos en series de pacientes pediátricos que estuvieron expuestos a ABVD durante todo el embarazo, incluyendo primer trimestre13. No existen datos sobre seguridad con el uso de Stanford V o BEACOPP ni de otros regímenes como MOPP, ABV, AVD y MOPP/AVD3,12.

Siempre que sea posible, en gestantes asintomáticas y con estadios localizados, se recomienda retrasar el inicio del tratamiento hasta al menos el segundo trimestre de embarazo, realizando una vigilancia estrecha. Más del 50% de las pacientes podrán llevar el embarazo a término sin tratamiento. Si la enfermedad amenaza seriamente el bienestar de la madre (enfermedad sintomática, voluminosa, progresiva, infradiafragmática...), deberá plantearse la interrupción del embarazo antes de plantear tratamiento quimioterápico.

La limitada evidencia disponible sobre la seguridad de ABVD en este periodo ha motivado el uso de vinblastina en monoterapia para control de la enfermedad, a modo de terapia puente hasta los siguientes trimestres o hasta el parto14. La pauta utilizada es de 6 mg/m2 cada 3 - 6 semanas. Se han comunicado respuestas del 75% y escasa toxicidad para la madre y el feto. En pacientes que progresen durante el tratamiento con vinblastina y en casos de alto riesgo se recomienda valorar el aborto terapéutico.

Segundo y tercer trimestre:

En pacientes con enfermedad sintomática o progresiva puede iniciarse tratamiento con ABVD, teniendo en cuenta el balance riesgo beneficio y la menor toxicidad fetal. Existe una evidencia creciente de que el uso de ABVD en el segundo y tercer trimestre es seguro y que no presenta menor eficacia terapéutica respecto a no embarazadas11. Se recomienda retrasar el parto al periodo no neutropénico.

Si existe enfermedad altamente sintomática supradiafragmática puede plantearse el uso de radioterapia para control local15. Debe reservarse para los casos en los que sea absolutamente necesario, debiendo extremar las precauciones para limitar la dosis corporal fetal a menos de 0.1 Gy mediante el uso de protectores uterinos y radioterapia campo afecto.

Las pacientes en estadios localizados I-IIB supradiafragmáticos con enfermedad estable y fácilmente monitorizable pueden mantenerse en vigilancia sin tratamiento. Diferir la terapia hasta después del parto permitirá un estadaje completo e instaurar un tratamiento adecuado.
Tratamiento de rescate durante el embarazo:

Los casos de recidiva de la enfermedad durante el embarazo son raros. ABVD presenta bajo riesgo de infertilidad en la mujer y es recomendable evitar el embarazo durante los 2 primeros años tras el tratamiento de primera línea. Se disponen escasos datos de seguridad sobre el tratamiento de rescate durante el embarazo, y debemos plantear en estos casos de alto riesgo, la recomendación de valorar el aborto terapéutico 3,10.

7.2. LHc EN PACIENTES CON EDAD AVANZADA

El LHc presenta una distribución epidemiológica bimodal, de manera que el 20% de los pacientes diagnosticados de LHc tiene más de 60 años, con una incidencia que se ha mantenido estable durante décadas16. Teniendo en cuenta el aumento progresivo de la esperanza de vida, esperamos que este subgrupo de pacientes esté cada vez más representado.

Aspectos clínicos del LHc en la edad avanzada:

Estos pacientes representan un grupo muy heterogéneo en cuanto a sus características basales y su pronóstico es significativamente inferior al de los pacientes jóvenes independientemente del tratamiento usado. Presentan:

- Mayor agresividad clínica: frecuentes casos de celularidad mixta, positividad para EBV, síntomas B y estadios avanzados. La enfermedad voluminosa es rara16.
- Comorbilidad y pérdida de la capacidad funcional. Una valoración geriátrica integral (VGI), que comprenda aspectos como, estado funcional, comorbilidad, estado cognitivo, nutrición, soporte social/ calidad de vida y síndromes geriátricos, nos ayudará a conocer de una manera más objetiva la capacidad que tiene el paciente para recibir un tratamiento determinado, en función de su grado de fragilidad17. El uso de escalas como ECOG, índice de comorbilidad de Charlson y el CIRS-G (cumulative illnesses rating scale - geriatrics) y escala GAH (Geriatric Assessment in Hematology), resultan herramientas gran utilidad, con la finalidad de evaluar la edad biológica o funcional, como factor predictivo pronóstico más importante en este grupo de edad, que los sistemas clásicos de estratificación pronóstica18-19.
- Frecuentes retrasos diagnósticos y estadaje incompleto, que dificulta los planteamientos terapéuticos.
- Intolerancia a tratamiento quimio y radioterapico, con mayor tendencia a sufrir toxicidad secundaria y mielo-supresión.
- Menor adherencia al tratamiento.

Opciones terapéuticas33-35

No disponemos de un estándar de tratamiento ya que este grupo ha representado una minoría de los pacientes incluidos en ensayos aleatorizados. Los resultados terapéuticos son aceptables en pacientes de 60 a 70 años con estadio localizado, pero pobres en estadios avanzados y espacialmente pobres a partir de los 70 años así como en los que tienen limitaciones en las actividades básicas de la vida diaria18-19.

ABVD19-22

Presenta resultados inferiores en comparación con los pacientes jóvenes, aún presentado tasas de respuesta global por encima del 85% y de SG a los 5 años en torno al 65%. Debe de ser usado con precaución en este grupo de pacientes, ya que distintos grupos han comunicado toxicidad grado III y IV (OMS) hasta en dos tercios de los pacientes, que obliga a reducir dosis o retrasar tratamientos. Destacan toxicidad pulmonar a bleomicina, hematológica, infecciones y nauseas. Presenta una mortalidad asociada a tratamiento del 5%.
Algunos grupos recomiendan adaptar el tratamiento a las características basales del paciente. La bleomicina (B) se asocia con toxicidad pulmonar hasta en el 30% de los pacientes ancianos y es fatal en 5 - 14% de los mismos. Su omisión disminuye las tasas de respuesta, si bien el balance riesgo beneficio de la suspensión puede ser positivo en los pacientes de alto riesgo, que son aquellos con antecedente de EPOC, fumadores, ancianos frágiles o los que reciben más de 4 ciclos de tratamiento. Se ha observado que el uso de 2 ciclos de B no aumenta significativamente el riesgo de neumopatía y que su suspensión tras 2 ciclos completos de ABVD no tuvo impacto pronóstico significativo en los pacientes que presentaron una respuesta inicial en el PET-TAC interim.

La Adriamicina (A) presenta un riesgo de cardiopatía global del 2.5%, que aumenta al 11% en mayores de 60 años y al 38% en mayores de 70 años; fundamentalmente por insuficiencia cardiaca (ICC) y trastornos de la conducción. Suele evitarse en pacientes con historia de ICC grado NYHA > 3 ó una fracción eyecación del ventrículo izquierdo < 50%. En estos casos, el grupo GELTAMO recomienda que dada la importancia de la A en ABVD, puede administrarse en los dos primeros ciclos bajo vigilancia estrecha. Se han estudiado los efectos de la suspensión de Dacarbazina observando una pérdida sustancial de eficacia.

Otros protocolos:

STANDFOR V presenta mayores tasas de toxicidad sin aumento de la supervivencia en comparación con ABVD y BEACOPP una mortalidad relacionada con el tratamiento del 21%, por lo que no se debe recomendar su uso en esta población.

El régimen PVAG (Prednisona, Vinblastina, Adriamicina, Gemcitabina) en un ensayo fase II realizado por GHSG con 59 pacientes, la mayoría en estadio avanzado, presentó tasas de SO y PFS a los 3 años fue del 66% y 58% respectivamente, con toxicidad III y IV en el 75% y un único caso de muerte relacionada con el tratamiento. Los casos que no alcanzaron RC se administró radioterapia adicional.

En el estudio SHIELD se utilizaron 3 ciclos VEMPEB (Vinblastina, Ciclofosfamida, Prednisona, Procarbazina, Etoposido, Mitoxantrona, Bleomicina) asociado radioterapia para pacientes con estadio localizado obteniendo tasas de RC del 74%, con OS y PFS a los 3 años del 81% y del 74% respectivamente. Los estadios avanzados se trataron con 6 ciclos de VEMPEB, obteniendo 61% de RC, con OS y PFS a los 3 años del 66% y del 58%. La mortalidad relacionada con el tratamiento fue del 7%.

El régimen CHOP asociado a radioterapia también ha sido estudiado en un pequeño grupo de pacientes mayores. La tasas de RC fue del 93%, con una OS y PFS a los 3 años de 79% y 76%, con 2 casos de muerte relacionada con el tratamiento, por lo que también parece seguro para estos pacientes.

Varios estudios han confirmado el uso de ChIVPP (Clorambucilo, Vinblastina, Procarbazina y Prednisona) en pacientes mayores. En una cohorte de 284 pacientes con estadio avanzado, presenta una tasa de RC del 85%, con tasas de supervivencia estimadas y sin progresión a los 10 años del 71% y 65% respectivamente.

Por último, Brentuximab Vedotin (BV) en monoterapia se ha evaluado en un ensayo fase II, con una pequeña cohortes de 27 pacientes con una media de edad de 78 años y de los que 63% tenía un estadio III-IV. Presentaron respuestas globales del 92%, con 73% de RC y duración media de respuesta de 9.1 meses. Los efectos adversos más frecuentes fueron neuropatía sensorial (78%), fatiga (44%), náuseas (44%) y la mayoría menores de grado II. Se ha estudiado además en combinación con AVD, Bendamustina y Dacabazina (DITC). Con DITC demostró resultados muy prometedores al presentar RG del 100%, con RC del 62% y tras una mediana de seguimiento de 21.6 meses, la PFS mediana fue de 17.9 meses. Se produjeron 45% de efectos adversos grado III, siendo el más común la neuropatía periférica sensorial (76%). Siendo necesario ampliar su estudio a poblaciones más numerosas, BV presenta en combinación y monoterapia buenos resultados que sugieren un papel importante en el futuro del tratamiento de pacientes que de otra manera, recibirían tratamiento paliativo.
Recaída o progresión:

El pronóstico es adverso y las recomendaciones en este grupo no pueden hacerse de manera uniforme. En pacientes menores de 70 años y sin comorbilidad significativa se puede plantear tratamiento de rescate estándar (MINE, ESHAP, DHAP, ICE…) y trasplante autólogo de PH. El resto se beneficia de tratamiento paliativo.

Tratamiento sugerido para LHc en ancianos

Estadios I - II sin factores de riesgo:
- A(B)VD (2 ciclos) +/- AVD (2 ciclos) + Rt 20-30 Gy (preferido)
- CHOP (4 ciclos) + Rt 30 Gy
- VEMPSEMB +/- Rt 30 Gy

Estadios I-II con factores de riesgo y Estadios III-IV:
- A(B)VD (2 ciclos) + AVD (4 ciclos) si PET-TAC interim negativo e individualizar si es positivo (preferido)
- CHOP (6 ciclos) +/- Rt 30 Gy
- PVAG (6 ciclos) +/- Rt 30 GyVE
- PEMB (6 ciclos) +/- Rt.

Recaída o refractariedad:
- Decisión de tratamiento individualizada.
- Bendamustina, Brentuximab Vedotin, Nivolumab
- Paliativa: Radioterapia local, Vinblastina, Clorambucilo, corticoides.

7.3. LHc EN PACIENTES VIH POSITIVOS

A pesar de que el LHc no está incluido como enfermedad definitoria de sida, su incidencia en la población VIH es de unas 10 veces superior respecto a la población general. Además, al contrario que en el caso de los LNH, su incidencia no parece que haya disminuido desde la introducción de la terapia antiretroviral (TAR).

La presentación clínica del LHc en pacientes VIH sigue siendo más agresiva que en la población general, con mayor frecuencia de variantes histológicas de celularidad mixta y depleción linfocítica, estadios avanzados, síntomas B, afectación extraganglionar y positividad para EBV. Sin embargo, desde la introducción de la TAR el pronóstico de estos pacientes es equiparable a los pacientes sin infección por VIH.

Los resultados con las pautas clásicas de tratamiento (ABVD, Stanford V o BEACOPP) en estos pacientes, no difieren de los obtenidos en la población general, por lo que el abordaje terapéutico debe realizarse dentro de los protocolos convencionales, incluyendo las mismas indicaciones para la realización de TPH autólogo, mientras no existe el mismo nivel de evidencia para TPH alogénico.

La TAR ha contribuido de forma independiente a mejorar la respuesta a la quimioterapia y la supervivencia, por lo que todo paciente VIH positivo con LH debe recibir antirretrovirales de forma concomitante a la quimioterapia (AII). Se recomienda evitar los inhibidores de la proteasa y los inhibidores de la transcriptasa inversa no análogos de nucleósidos y en su lugar utilizar los inhibidores de la integrasa y los inhibidores de la transcriptasa inversa análogos de nucleósidos/nucleótidos.
BIBLIOGRAFÍA

Los efectos secundarios al tratamiento del LH incrementan la morbimortalidad en supervivientes, su detección precoz ayuda a controlar y reducir su gravedad potencial, mejorando calidad de vida. A continuación se muestran las más relevantes.

I. ENDOCRINOPATIAS:

A) ALTERACIONES TIROIDEAS

Tras la RT cervical o supraclavicular pueden estar presentes en > 60%, siendo la más frecuente la hipofunción tiroidea. Sin embargo, nódulos tiroideos, hipertiroidismo e incluso carcinoma de tiroides secundarios al tratamiento (radioterapia +/- quimioterapia) parecen ser bastante menos frecuentes.

Hipotiroidismo

Suele aparecer a los 2 o 3 años de la RT (2 meses – 11 años; mediana de 6 años), pero se han descrito casos hasta 20 años después de la misma, apreciándose una tasa creciente con el discurrir del tiempo. El riesgo de desarrollar hipotiroidismo se ha correlacionado con la dosis de radiación recibida. Se recomienda realizar una determinación de TSH anual a partir del primer año de seguimiento o antes si existen síntomas clínicos de sospecha.

B) DIABETES

El desarrollo de diabetes en supervivientes de LH se ha observado sobre todo en pacientes que habían recibido RT abdominal. El mayor riesgo se ha observado en pacientes que presentaban menos de 25 años, radiados a nivel paraaórtico y con dosis superiores a 36 Gy.

C) ESTERILIDAD Y ALTERACIONES DE LA FUNCIÓN SEXUAL ENDOCRINA

Tanto la quimioterapia (QT) con la RT pueden afectar de forma transitoria o permanente la fertilidad del paciente. Este efecto depende de la dosis acumulada de QT y/o RT, la edad a la que se recibe el tratamiento, los fármacos empleados y sus dosis totales.

a) RT: La disfunción ovárica depende de la edad, dosis empleada y el tipo de fraccionamiento. La esterilidad permanente puede ocurrir en el 60% de las mujeres que reciben 5-6 Gy de irradiación sobre ambos ovarios. Además, la RT sobre la región uterina se ha asociado a un crecimiento de pérdidas fetales, prematuridad y recién nacidos de bajo peso. En el caso de los varones, las dosis iguales o superiores a 1,2 Gy sobre los testículos provocan esterilidad que habitualmente es permanente.

b) QT: Los regímenes que contienen alquilantes (MOPP, COPP o BEACOP) producen tasas de esterilidad mucho mayores que aquellos que no los incluyen (ABVD). La frecuencia de infertilidad en mujeres varía desde el 67% tras 8 ciclos de BEACOPP escalado, hasta prácticamente el 0% en mujeres que reciben 6 o menos
ciclos de ABVD. El régimen de BEACOPP escalado produce esterilidad en el 90% de los varones. Por otro lado, el esquema ABVD, si bien puede producir amenorrea u oligospermia, generalmente son transitorias, con recuperación en la mayoría de los casos tras 12-24 meses de finalizar quimioterapia.

Cabe destacar el posible uso profiláctico de agonistas de GnRH, como inhibidores de la secreción de gonadotropinas endógenas en la prevención de infertilidad en mujeres en edad fértil, pues si bien no existe un claro consenso sobre su eficacia, estudios recientemente publicados, como el fase III S0230/POEMS, en mujeres premenopáusicas con cáncer de mama, muestran su eficacia al reducir el periodo de amenorrea postquimioterápica (20% en terapia con goserelin mensual vs. 45% sin este) y la incidencia acumulada de embarazos a 5 años es de un 23.1% y 12.2% respectivamente (odds ratio = 2.34; 95% CI = 1.07 to 5.11; P = .03). Por lo que actualmente, estaría recomendado especialmente cuando no disponemos de recursos para realizar criopreservación de ovocitos y utilizamos regímenes más intensivos quimioterápicos, para reducir el riesgo de fallo ovárico como secuela de estos tratamientos.

Durante el seguimiento, debemos realizar un estudio hormonal completo en las mujeres que presenten amenorrea o síntomas menopáusicos después del tratamiento. Si el estudio hormonal demuestra un patrón postmenopáusico que se mantiene durante más de un año, debe administrarse terapia hormonal sustitutiva para prevenir osteoporosis y envejecimiento cardiovascular precoz. En el caso de los varones, las células de Leydig son más resistentes al tratamiento y es poco habitual observar descensos en la producción de testosterona y el estudio de la función hormonal testicular solo debe realizarse si existe clínica de hipogonadismo.

2. INMUNOSUPRESIÓN Y AUMENTO DEL RIESGO DE INFECCIONES

Tanto la deficiencia de inmunidad celular previa, así como la humoral con niveles reducidos de IgM y pobre producción de anticuerpos debidas a la RT (campo extendido, ICT y esplénica) y la QT pueden aumentar el riesgo de infecciones. En pacientes con asplenia se aconseja vacunación contra germenes encapsulados e Haemophilus influenzae. La vacunación antigripal se aconseja en pacientes tratados con Bleomicina y RT mediastínica.

3. ALTERACIONES PULMONARES

Los pacientes curados de LH que han recibido tratamiento con RT mediastínica, bleomicina, adriamicina, vinblastina, dacarbazina, gemcitabina o BCNU, pueden presentar secuelas pulmonares tardías tales como fibrosis pulmonar y neumonitis intersticial clínica o subclínica. Hasta el 20% de los largos supervivientes presentan alteraciones en la capacidad funcional pulmonar. Dentro de ellos, con mayor frecuencia, pacientes con factores de riesgo previos, como fumadores, con antecedentes de enfermedad pulmonar o que reciben el tratamiento quimioterápico por encima de los 40 años de edad, de igual modo, el uso de G-CSF concomitante con la bleomicina es otro factor que incrementa el riesgo de toxicidad pulmonar.

Durante el seguimiento a corto y largo plazo, debemos vigilar signos que puedan indicar posible toxicidad pulmonar; ya que su detección precoz indicaría la recomendación de la retirada de fármacos potencialmente implicados en esta toxicidad pulmonar; de igual modo, debemos insistir en el abandono del tabaco y en la profilaxis de las infecciones respiratorias.

4. ATROFIA MUSCULAR

La aplicación de RT sobre la zona cervicoescapular (mantle) puede provocar muy tardíamente un raro cuadro de debilidad muscular en la zona que se manifiesta como “síndrome de cabeza caída”. Su fisiopatología es desconocida pero se le supone un origen mixto con un daño combinado del músculo y el nervio. Su manejo es puramente ortopédico.
5. FATIGA

En los largos supervivientes del LH se ha descrito una alta prevalencia de fatiga crónica en comparación con grupos control. El origen de este cansancio es probablemente multifactorial: alteraciones en la función pulmonar o cardíaca, ansiedad, depresión y otras comorbilidades. En estos casos se ha recomendado la práctica de ejercicio físico regular8-9,12.

6. PROBLEMAS CARDIOVASCULARES Y LESIONES MIOCÁRDICAS

La RT sobre el área cardíaca y los regímenes de QT que contienen antracilínicos se han asociado con arritmias, infarto de miocardio y coronariopatía, pericarditis, miocarditis, derrame pericárdico, taponamiento cardíaco, y muerte súbita. El mecanismo fisiopatológico por el que se produce el daño cardiovascular es diferente en ambos tipos de tratamiento. La RT produce daño endotelial que favorece la arteriosclerosis prematura, mientras que los antracilínicos provocan una pérdida de masa miocárdica, lo que lleva a una remodelación y disfunción celular. En los pacientes largos supervivientes, el riesgo actuarial de desarrollar una coronariopatía sintomática es del 6% a los 10 años y del 10-20% a los 20 años. De igual manera, el riesgo actuarial de muerte por isquemia es 2-6% a los 10 años y del 10-12% a los 15 a 25 años, riesgo 5 veces superior al de la población general. Por eso, es recomendable que se realice un ecocardiograma y ECG a los pacientes tratados con antraciclinas (a una dosis equivalente a ≥300 mg/m² de adriamicina) y/o aquellos que hayan sido irradiados en la región mediastínica. La frecuencia con la que deben realizarse está varia según las guías, así la NCCN recomienda su realización cada 10 años8-9,16.

Por otro lado, el riesgo actuarial de complicaciones vasculares no cardiacas (por ejemplo, carotídeas o subclavias) es del 3% a los 10 años y del 7% a los 20. También se ha descrito un aumento del riesgo de valvulopatía con unas tasas del 4% a los 15 años y 6% a los 20 años, lo que representa un incremento del riesgo relativo de la necesidad de recambio valvular. Además, la irradiación del cuello y/o del mediastino, especialmente cuando se administra a pacientes jóvenes se ha asociado con mayor riesgo de accidente vascular cerebral. Las guías NCCN recomiendan la realización de una ecografía doppler de carótidas cada 10 años en aquellos pacientes que hayan recibido RT cervical16.

Aunque el riesgo se ha reducido mediante regímenes de RT que limitan la dosis de radiación que recibe el corazón, los pacientes tratados con una dosis ≥35 Gy sobre el mediastino son subsidiarios de detección precoz de enfermedad coronaria a partir de los 5 - 10 años de habiendo completado la terapia. El resto de factores de riesgo cardiovascular (tabaquismo, obesidad, dislipemia, hipertensión, hipercalemia) también deben controlarse durante el tratamiento y posteriormente16.

7. NEOPLASIAS SECUNDARIAS

Incluyen neoplasias hematológicas y tumores sólidos. El riesgo de leucemia aguda tiene un pico de incidencia entre 5 y 9 años, mientras que el de los tumores sólidos se incrementa progresivamente desde los 10 años y hasta más de 25 años después del tratamiento8-9,17.

A) Neoplasias hematológicas: Se han relacionado fundamentalmente con el tratamiento quimioterápico (alquilantes). Los principales tumores observados (tasas más altas de incidencia) son las leucemias agudas, los síndromes mielodisplásicos y los linfomas. La incidencia de LAM es aproximadamente del 1 al 3%, generalmente en los primeros 10 años tras el tratamiento. La quimioterapia con ABVD (menos tóxica que los regímenes anteriores) se asocia con un menor riesgo de leucemia8-9,17.

B) Tumores sólidos: Se relacionan fundamentalmente con la aplicación de RT en sí. Entre los tumores más frecuentemente observados están:

a) Cáncer de mama: Aparece tras un largo periodo de latencia (10-15 años). Las pacientes irradiadas antes de los 30-35 años de edad y las que recibieron dosis altas de RT son las de mayor riesgo. Se debe realizar
una mamografía anual en mujeres tratadas con RT supradifragmática comenzando a los 8-10 años tras el tratamiento o a la edad de 40 años, lo que ocurra antes. La resonancia nuclear magnética se ha recomendado como técnica adicional pero puede aumentar los falsos positivos. La combinación de mamografía con ecografía puede ser una alternativa aceptable y menos costosa.

b) Cáncer de pulmón: Tanto la RT como la exposición a QT (especialmente a alquilantes como procarbazina, mecloretamina y dacarbazina) incrementan el riesgo de sufrir esta neoplasia en una relación dosis-dependiente. Los pacientes de alto riesgo, esto es, los tratados con RT mediastínica, especialmente si tenían antecedentes de tabaquismo, pueden ser considerados candidatos a seguimiento con TAC torácico a partir de los 5 años de seguimiento.

c) Otros tumores sólidos: El riesgo de aparición de otros tumores sólidos en general no es despreciable. El cáncer colorrectal se adelanta unos 10 años respecto a la población general y el riesgo de un paciente de 40 años tratado a la edad de 15 o de 25 años es 6,1 y 3,9 por 10.000 por año, respectivamente, mientras que en adultos de 50 a 54 años, cuando empieza a recomendarse la detección precoz rutinaria, es 4,5 por 10.000 por año. Las guías recomiendan la realización de colonoscopias rutinarias cada 5-10 años a partir de los 35-40 años. El riesgo aumentado de cáncer de cuello de útero hace que también haya que insistir en que deba incorporarse a la rutina del seguimiento el frotis cervical con una periodicidad anual al igual que en la población general. Otros tumores también asociados incluyen: estómago, páncreas, tiroides, melanoma, tejido conectivo, etc.

En conclusión, el hecho de que el LH sea una neoplasia afortunadamente curable en primera intención en un porcentaje elevado de pacientes, plantea un escenario muy distinto al de otras neoplasias hematológicas. Este, obliga a considerar las consecuencias a largo plazo de las terapias aplicadas.

En la actualidad, la aplicación de regímenes menos intensivos y adaptados al riesgo, la posibilidad de un desescalado terapéutico, con la omisión de bleomicina en pacientes respondedores en PET-i, así como la utilización cada vez limitada de RT sobre campos afectos y guiada por PET, hacen que las complicaciones a medio y largo plazo sean menores por la disminución de la intensidad de QT/RT en función del riesgo del paciente, por lo que hemos de tener presente que la mayoría de los datos publicados y previamente referenciados en este capítulo, están basados en pacientes tratados hace mucho tiempo.

Por tanto, tanto el hematólogo como el propio paciente deben estar advertidos de las mismas de forma que pueda hacerse un seguimiento integral que permita minimizar las secuelas de los tratamientos y anticiparse a potenciales complicaciones.

Recomendaciones generales en prevención y seguimientos posibles secuelas de pacientes con LHc sometidos a quimio/radioterapia:

La vacunación antigripal se aconseja en pacientes tratados con Bleomicina y RT mediastínica y añadir en pacientes con asplenia frente a gérmenes encapsulados e Haemophilys influenzae.

Se recomienda realizar una determinación de TSH anual a partir del primer año de seguimiento o antes si existen síntomas clínicos de sospecha.

Recomendamos el uso de agonistas de GnrH en la prevención de infertilidad en mujeres en edad fértil, especialmente cuando no disponemos de recursos para realizar criopreservación de ovocitos y utilizamos regímenes mas intensivos quimioterapéicos, para reducir el riesgo de fallo ovárico como secuela de estos tratamientos.

Se debe realizar una mamografía anual en mujeres tratadas con RT supradifragmática comenzando a los 8-10 años tras el tratamiento o a la edad de 40 años, lo que ocurra antes.
Se debe realizar un ecocardiograma y ECG a los pacientes tratados con antraciclinas (a una dosis equivalente a ≥300 mg/m² de adriamicina) y/o aquellos que hayan sido irradiados en la región mediastínica. La frecuencia con la que deben realizarse estas pruebas varía según las guías, pero como mínimo se recomienda su realización cada 10 años²⁻¹⁰⁻¹⁴.

BIBLIOGRAFÍA
